دراسة تأثیر الری الجزئی على محصول الطماطم تحت الظروف المصریة

نوع المستند : Original Article

المؤلفون

1 أستاذ بقسم الهندسة الزراعیة- کلیة الزراعة- جامعة المنوفیة، مصر

2 مدرس بقسم الهندسة الزراعیة- کلیة الزراعة- جامعة المنوفیة، مصر

3 مهندسة بمعهد بحوث الهندسة الزراعیة- مرکز البحوث الزراعیة، مصر

المستخلص

أجریت هذه الدراسة خلال موسمی الزراعة (صیفی 2015 – شتوی 2016) على نبات الطماطم فی مزرعة کلیه الزراعة بشبین الکوم فی تربه طینیه واستهدفت دراسة تأثیر الری الجزئی على نبات الطماطم تحت الظروف المصریة وذلک باستخدام نظام الری بالتنقیط. حیث تمت زراعة نباتات الطماطم على مصاطب ذات ابعاد (0.7 × 15) متر والمسافة بین المصاطب 40 سم واستخدم النقاط طویل المسار فی شبکة الری بالتنقیط بتصرف 4 لتر/ ساعة. واشتملت التجربة على المعاملات الاتیة:

نظام الری: تمت التجربة تحت نظامین للری وهما الری بالتنقیط التقلیدی-الری بالتنقیط الجزئی.
مستویات الماء: تم استخدام ثلاث مستویات لمعدل إضافة میاه الری وهی 100% -75%-50% من البخر-نتح لمحصول الطماطم. 
نظام التغطیة: تم اجراء التجربة وذلک باستخدام التغطیة-وبدون استعمال التغطیة بالبلاستیک.

وکانت اهم النتائج المتحصل علیها کالتالی:

حقق نظام الری بالتنقیط الجزئی توزیع أمثل للمحتوى الرطوبی فی منطقه الجذور مقارنة بنظام الری بالتنقیط التقلیدی. وذلک نتیجة ارتفاع المحتوى الرطوبی فى نظام الری بالتنقیط الجزئی مقارنة بنظام الری بالتنقیط التقلیدی. وکذلک ارتفاع المحتوى الرطوبی تحت نظام التغطیة بالبلاستیک مقارنة بنظام عدم التغطیة.
ارتفاع انتاجیة المحصول فی نظام الری بالتنقیط الجزئی مقارنة بنظام الری بالتنقیط التقلیدی خصوصا عند مستویات نقص الماء. وکذلک ارتفاع الإنتاجیة تحت نظام التغطیة مقارنة بعدم التغطیة لأن التغطیة تساعد على ارتفاع رطوبة التربة فی منطقة الجذور.

الحصول على أقصى کفاءة استخدام لمیاه الری عند مستوى 50 % من البخر-نتح، اما نظام الری بالتنقیط الجزئی فأعطى أقصى کفاءة لاستخدام میاه الری مقارنة بنظام الری بالتنقیط التقلیدی

الموضوعات الرئيسية


Anderson. K; C. Findlay; S. Fuentes; and S. Tyerman, (2008).  Viticulture, Wine and Climate Change. Garnaut Climate Change Review.
Black, C.A. (1965). Method of soil and water analysis. Part 2: Madison, Wisconsin, USA.
Casillas, G. (1978). Soil water engineering laboratory manual, Colorado State. University. Dep. of Agri. and Chem. Eng. Fort Collins, Colorado 80523, June 19.
De la Hera. M.L; P. Romero; E. Gomez-Plaza; and A. Martinez (2007). Is partial root- zone drying an effective irrigation technique to improve water use efficiency and fruit quality in field- grown wine grapes under semiarid conditions? Agriculture water management 87 (2007) 261- 274.
Dorji, K; M.H. Behboudian; and J.A. Zegbe-Domınguez (2005). (Water relations, growth, yield, and fruit quality of hot pepper under deficit irrigation and   partial rootzone drying) Scientia Horticulture 104 (2005) 137–149. 
El-Sadek. A. (2014). Water use optimization based on the concept of Partial Rootzone Drying. 1016/j.asej.2013004" HYPERLINK "http://dx.doi.org/10.1016/j.asej.2013.09.004"AinHYPERLINK "http://dx.doi.org/10.1016/j.asej.2013.09.004" Shams Engineering Journal  (2014) 55–62.
FAO (2018). FAOSTAT online database, available at link http://faosstat.Fao.org/. Accessed on March 2018.
Gencoglan. C; H. Altunbey; and S. Genc, (2006). Response of green bean (P. vulgaris L.) to subsurface drip irrigation and partial Rootzone drying irrigation. Agriculture water management .48 (2006) 274-280.
Huffaker, R and J. Hamilton (2007). Conflict. In: Irrig. Of Agri crops (Lascano. R.J; and Sojka. R.E. Ed.). Second edition Agronomy Monograph no.30. ASA- CSSA-SSSA publishing, 664p.
Hutton. R. J and B.R. loveys, (2011). A partial root zone drying irrigation strategy for citrus—Effects on water use efficiency and fruit characteristics. Agriculture water management. Volume 98, Issue 10, August 2011, Pages 1485–1496.
Intrigliolo, D. S; and J. R. Castel, (2009). Response of Vitis vinifera   cv. ‘Tempranillo’ to partial rootzone drying in the field: Water relations, growth, yield, fruit, and wine quality. Agricultural water management (96): 282 –292.
Jensen, M.E, (1983). Design and operating of farm irrigation system. ASAE, Michigan, USA.
Jury, W. A. and H.J. Vaux (2007). The Emerging Global Water Crisis: Managing Scarcity and Conflict between Water Users. Advances in Agronomy (95): 1-76. https://doi.org/10.1016/S0065-2113(07)95001-4
Kang, S. Z, and J. Zhang (2004). Controlled alternate partial root-zone irrigation:  its physiological consequences and impact on water use efficiency. J. Exp. Bot. 55, 407, 2437- 2446.
Keller. J. and D. Karmeli, (1974). Trickle irrigation design parameters. ASAE Transactions, 17 (4): 678-684.
Keller. J. and D. Karmeli, (1975). Trickle irrigation design. First Ed., Rain Bird Co., Glendora, CA: 133 pp.
Kirda C.C; M. Cetin; Y. Dasgan; S. Topcu; H. Kaman; B. Ekici; M.R. Derici; and A.I. Ozguven, (2004). Yield response of Greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agricultural Water Management 69 (2004) 191–201.
Lekakis, E.H; P.E. Georgiou; A. Pavlatou-Ve; and V.Z. Antonopoulos (2011).  Effects of fixed partial root-zone drying irrigation and soil texture on water and solute dynamics in calcareous soils and corn yield. Agricultural Water Management 101 (2011) 71–80.      
Marjanović M; Z. Jovanovic; R. Stikic; and B.V. Radović (2015).  The Effect of Partial Root-Zone Drying on Tomato Fruit Growth. Procedia Environmental Sciences 29 (2015) 87.  
Parvizi .H; A.R. Sepaskhah; and S.H. Ahmadi, (2016). Physiological and growth responses of pomegranate tree (Punicagranatum (L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes. Agricultural Water Management 163 (2016) 146–158.            
Shahnazari, A; L. Fulai; N. A. Mathias; S. Jacobsen; and C.R. Jensen, (2007). Effects of partial root-zone drying on yield, tuber size and water use efficiency in potato under field conditions. Field conditions. Field Crops Research 100 (2007) 117–124.
Solomaon. K. H, (1987). Selection of trickle irrigation emitters. In: Micro irrigation methods and materials update (eds. D. F. Zoldoske and M. Y. Miyaski), P.259- 256. Center for irrigation technology, Calif. Univ., Frenso, Calif. USA. Technology, choices: a micro parameter approach. Am. J. Agric. Econ. 78, 1064-1072.
Spreer. W; M. Nagle; S. Neidhart; R. Carle; S. Ongprasert, and J. Mueller (2007). Effect of regulated deficit irrigation and partial rootzone drying on the quality of mango fruits (Mangifera indica L., cv. ‘Chok Anan’).Agriculture water management 88 (2007) 173-180.                            
Taisheng. Du; S. Kang; J. Zhang, Li. Fusheng; and Hu. Xiaotao, (2006). (Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of China) Agriculture water management (84): 41-52.
Tang. Li; Y. Li, and J. Zhang (2005). Physiological and yield responses of cotton under partial rootzone irrigation. Field Crops Research 94 (2005) 214–223.
Toureiro, C., Serralheiro, R., Shahidian, S., and Sousa, A. (2016). ‘Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition’. Agric. Water Manage. http://dx.doi.org/10.1016/j.agwat.2016.02.010
Wang, Z; F. Liu; S. Kang; and C.R. Jensen, (2012). Alternate partial root-zone drying irrigation improves nitrogen nutrition in maize (Zea mays L.) leaves. Environmental and Experimental Botany 75 (2012) 36–40.
Wei. Z; T.D; J. Zhang; S. Xu; P.J. Cambre, and W.J. Davies (2016) Cabron isotope discrimination shows a higher water use efficiency under alternate partial rootzone irrigation of field –grown tomato. Agriculture Water Management 165 (2016) 33-43. 
Yactayo. W; D.V. Ramírez; R. Gutiérrez; V. Mares; A. Posadas, and                 Quiroz (2013).  Effect of partial root-zone drying irrigation timing on potato tuber yield and water use efficiency. Agricultural Water Management 123 (2013) 65–70.                 
Yang. L; Qu. Hui; Y. Zhang; and Li. Fusheng (2012). Effects of   partial root- zone irrigation on physiology, fruit yield and quality and water use efficiency of tomato under different calcium levels. Agricultural Water Management 104 (2012) 89–94.
Zegbe J.A; M.H. Behboudian; A. Lang; and B.E. Clothier (2003).  Deficit irrigation and partial rootzone drying maintain fruit dry mass and enhance fruit quality in ‘Petopride’ processing   tomato (Lycopersicon esculentum, Mill.) Sci. Horti. (98): 505- 510.