تحديد وإدارة المناطق الزراعية باستخدام الاستشعار عن بعد ونظم المعلومات الجغرافية في قرية الشيخ مسعود بمحافظة المنيا

نوع المستند : Original Article

المؤلفون

1 أستاذ الهندسة الزراعية، قسم الهندسة الزراعية، كلية الزراعة، جامعة عين شمس، القليوبية، القاهرة، مصر.

2 أستاذ الهندسة الزراعية، قسم الهندسة الزراعية، كلية الزراعة، جامعة عين شمس، القليوبية، القاهرة، مصر، وعميد كلية الزراعات الصحراوية، جامعة الملك سلمان الدولية، الطور، مصر.

3 أستاذ الأراضي، قسم الأرضي، كلية الزراعة، جامعة عين شمس، القليوبية، القاهرة، مصر.

4 طالبة ماجستير، قسم الهندسة الزراعية، كلية الزراعة، جامعة عين شمس، القليوبية، القاهرة، مصر.

المستخلص

أجريت الدراسة فى قرية الشيخ مسعود بالمنطقة الصحراوية غرب محافظة المنيا (28°39'15.3"N, 30°40'49.1"E) وكانت التربة ذات قوام رملى طميي بهدف تحديد النطاقات الزراعية باستخدام نظم المعلومات الجغرافية (GIS) والاستشعار عن بعد لتعزيز الزراعة الدقيقة من خلال تحديد نطاقات التربة وإدارتها باستخدام منهجيات مثل طريقة الوزن العكسي للمسافة (IDW) والتقدير الإحصائي (Kriging). ويتم دمج بيانات التربة المختلفة ( الملوحة، درجة الحموضة ) والعناصر الدقيقة (الحديد، المنجنيز، النحاس، والزنك) مع نماذج الاستيفاء المكاني القائمة على نظم المعلومات الجغرافية. وتم تحليل خصائص التربة مثل القوام، درجة الحموضة، والتوصيل الكهربائي (ECe)، وأوضحت النتائج عن وجود تنوع مكاني كبير في منطقة تبلغ مساحتها 3260 فدانًا، حيث تراوحت قيم ECe من 4 إلى 14.3 ديسي سيمنز/متر، ومستويات درجة الحموضة من 7.23 إلى 8.0، مما يشير إلى ظروف مختلفة من الملوحة والقلوية. تم أخذ 3 عينات على أعماق مختلفة من كل قطاع لتقدير العناصر المختلفة وقد أظهرت نماذج الاستيفاء المكاني التي تم التحقق منها باستخدام الجذر التربيعي لمتوسط الخطأ ((RMSE ، وأن طريقة التقدير الإحصائي (Kriging) دقيقة وموثوقة مع قيمة RMSE وقيمتها 1.5، مما أدى إلى إنتاج خرائط دقيقة لخصائص التربة المكانية. وتم تقسيم التربة لستة عشر نطاق: مناطق مغذية )جيدة ومتوسطة ومنخفضة(، ومن حيث الملوحة من مستويات ليس بها ملوحة إلى مستويات ملوحة قوية. ومما سبق يمكن التوصية باستخدام طرق ري مناسبه، مثل الري بالتنقيط والري تحت السطحي، لإدارة الأراضي تحت الظروف الحساسة للمياه والملوحة. وهذا النهج القائم على نظم المعلومات الجغرافية والنمذجة المكانية يدعم الممارسات الزراعية المستدامة.

الكلمات الرئيسية

الموضوعات الرئيسية


Aparicio N, Villegas, D, Araus J.L,and Casadesus (2002). Relationship between growth traits and spectral vegetation indices in durum wheat. Crop Science.;42: 1547-1555. https://doi.org/10.2135/cropsci2002.1547
Ashraf, M. (2002). "Salt tolerance of cotton: some new advances." Critical Reviews in Plant Sciences, 21(1), 1-30. https://doi.org/10.1016/S0735-2689(02)80036-3
Brevik, E. C., et al. (2016). Soil mapping, classification, and pedologic modeling: History and future directions. Geoderma, 264, 256-274.https://doi.org/10.1016/j.geoderma.2015.05.017
Carter, M. R., & Gregorich, E. G. (2020). Soil sampling and methods of analysis (2nd ed.). CRC Press. https://doi.org/10.1201/9781420005271
Chandra Pandey, P., Tripathi, A.K., and Sharma, J.K. (2021). An evaluation of GPS opportunity in market for precision agriculture. In GPS and GNSS Technology in Geosciences; Petropoulos, G.P., Srivastava, P.K., Eds.; Chapter 16; Elsevier: Oxford, UK,; pp. 337–349 https://doi.org/10.1016/B978-0-12-818617-6.00016-0
Corwin, D. L., et al. (2006). Monitoring management-induced spatio-temporal changes in soil quality through soil sampling directed by apparent electrical conductivity. Geoderma, 131(3-4), 369-387.. https://doi.org/10.1016/j.geoderma.2005.03.014
Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46(1-3), 11-43.https://doi.org/10.1016/j.compag.2004.10.005
Corwin, D. L., & Lesch, S. M. (2005). Characterizing soil spatial variability with apparent soil electrical conductivity. Part II. Case study. Computers and Electronics in Agriculture, 46(1-3), 135-152. https://doi.org/10.1016/j.compag.2004.11.003
Elbasiouny, H., et al. (2014). Spatial variation of soil carbon and nitrogen pools by using ordinary Kriging method in an area of north Nile Delta, Egypt. Catena, 150, 291-301.https://doi.org/10.1016/j.catena.2013.09.008
Elsharkawy, M. M., et al. (2022). Tool for the establishment of agro-management zones using GIS techniques for precision farming in Egypt. Sustainability, 14(9), 5437.  https://doi.org/10.3390/su14095437
Fagnano, M., et al. (2020). Copper accumulation in agricultural soils: Risks for the food chain and soil microbial populations. Science of The Total Environment, 734, 139434. https://doi.org/10.1016/j.scitotenv.2020.139434
Flowers, T. J., & Colmer, T. D. (2008). "Salinity tolerance in halophytes." New Phytologist, 179(4), 945-963. https://doi.org/10.1111/j.1469-8137.2008.02531.x
Kasampalis, D. A., Alexandridis, T. K., Deva, C., Challinor, A., Moshou, D., & Zalidis, G. (2018). Contribution of remote sensing on crop models: A review. J. Imaging, 4(4), 52.. https://doi.org/10.3390/jimaging4040052
Khoshru, B., et al. (2023). Enhancing manganese availability for plants through microbial potential: A sustainable approach for improving soil health and food security. Bacteria, 2(3), 129-141.https://doi.org/10.3390/bacteria2030010
Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software, 53, 173-189. https://doi.org/10.1016/j.envsoft.2013.12.008
Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
 McLean, E. O. (1982). Soil pH and lime requirement. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis, Part 2: Chemical and microbiological properties (2nd ed., pp. 199-224). American Society of Agronomy, Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c12
Munns, R., & Tester, M. (2008). "Mechanisms of salinity tolerance." Annual Review of Plant Biology, 59, 651-681.https://doi.org/10.1146/annurev.arplant.59.032607.092911
Munns, R., James, R. A., & Läuchli, A. (2006). "Approaches to increasing the salt tolerance of wheat and other cereals." Journal of Experimental Botany, 57(5), 1025-1043. https://doi.org/10.1093/jxb/erj100
Narayana, M.R,and Rao, N. H. (1995). GIS based decision support systems in agriculture. National Academy of Agricultural Research Management. Ragendranagar, Hyderabad.https://www.researchgate.net/publication/240617973_GIS_Based_Decision_Support_Systems_in_Agriculture
Pešić-Mikulec, D., Stojanović, D., and Joksimović, D. (2019). Application of GIS in studying land use and soil properties. Applied Engineering Letters, 4(3), 93-97. https://doi.org/10.18485/aeletters.2019.4.3.3
Qadir, M., et al. (2001). Amelioration strategies for saline soils: a review. Land Degradation & Development, 12(4), 357-386.https://doi.org/10.1002/ldr.458
Ratnaparkhi, S., et al. (2020). Smart agriculture sensors in IOT: A review. Materials Today: Proceedings.. https://doi.org/10.1016/j.matpr.2020.11.138
Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimental Botany, 57(5), 1017-1023. https://doi.org/10.1093/jxb/erj108
Rhoades, J. D. (1982). Soluble salts. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2: Chemical and microbiological properties (2nd ed., pp. 167-179). American Society of Agronomy, Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c11
Rohr, M., Brandenburg, V., & Brunner-La Rocca, H.-P. (2023). How to diagnose iron deficiency in chronic disease: A review of current methods and potential markers for the outcome. European Journal of Medical Research, 28, Article number: 15. https://doi.org/10.1186/s40001-022-00922-6
Saleem, M. H., et al. (2022). Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Frontiers in Plant Science, 13, 1033092.. https://doi.org/10.3389/fpls.2022.1033092
Seelan, S. K. (2003). Remote sensing application for precision agriculture: A learning community approach. Remote Sensing of Environment.;88:157-169. https://doi.org/10.1016/j.rse.2003.04.007
Shahbaz, M., & Ashraf, M. (2013). "Improving salinity tolerance in cereals." Critical Reviews in Plant Sciences, 32(4), 237-249. https://doi.org/10.1080/07352689.2013.758544
Sishodia, R. P., Ray, R. L., and Singh, S. K. (2020). Applications of remote sensing in precision agriculture: Areview. Remote Sensing, 12(19), 3136. https://doi.org/10.3390/rs12193136
Thomas, G. W. (1982). Exchangeable cations. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2: Chemical and microbiological properties (2nd ed., pp. 159-165). American Society of Agronomy, Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c9
Vašát, R., Heuvelink, G.B.M., and Bor˚uvka, L. (2010). Sampling design optimization for multivariate soil mapping. Geoderma, 155, 147–153.https://doi.org/10.1016/j.geoderma.2009.07.005
Webster, R., and Oliver, M. A.  (2007). Geostatisics for Environmental Scientists (2 nd ed), John Wiley & Sons, USA. https://doi.org/10.1002/9780470517277
               ISBN-13: 978-0-470-02858-2 (HB).
Zia, M. H., et al. (2007). Effectiveness of sulphuric acid and gypsum for the reclamation of a calcareous saline-sodic soil under four crop rotations. Journal of Agronomy and Crop Science, 193(4), 262-269.https://doi.org/10.1111/j.1439-037X.2007.00262.x
Zivotic, L. (2018). Effect of irrigation regime on yield, harvest index and water productivity of soybean grown under different precipitation conditions in a temperate environment. Agricultural Water Management, 213, 1-10 https://doi.org/10.1016/j.agwat.2018.08.002