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SEREEE This study was conducted in Sheikh Masoud village (28°39'15.3'N,
" 30°40'49.1°E) in the Western Desert, Minya Governorate, Egypt,
the texture of the soil is sandy loam. Geographic Information
Systems (GIS) and remote sensing were used to enhance precision
.| agriculture by delineating soil management zones. Utilizing
methodologies such as Inverse Distance Weighting (IDW) and
Kriging, it combines various soil and micro-nutrient (Fe, Mn, Cu
and Zn) data with GIS-based spatial interpolation models. Soil
characteristics like texture, pH, and electrical conductivity (ECe)

i e were analyzed, revealing significant spatial variability across a

N 3,260 Fed. area. ECe values ranged from 4 to 14.3 dS/m, and pH
© Misr J. Ag. Eng. (MJAE) | levels from 7.23 to 8.0, indicating diverse salinity and alkalinity
conditions. Three samples were taken from each profile at
different depths to estimate the various elements. The
interpolation models, validated through Root Mean Square Error
Keywords: (RMSE) calculations, showed Kriging with a reliable RMSE of
Management Zones; 1.5, producing accurate spatial soil property maps. Sixteen
Geographic Information management zones were identified: good, moderate and low
Systems; remote sensing; | Nutrient Zones and for salinity from non- to strong salinity levels.
IDW; Ece According to the study’s results, it can be recommended, tailored
irrigation methods, such as drip and subsurface irrigation to
manage water-sensitive and saline conditions. GIS and spatial
modeling approach support sustainable agricultural practice.

INTRODUCTION
In recent decades, technological advancements have transformed agricultural practices,
introducing innovative approaches that significantly enhance efficiency and productivity
(Ratnaparkhi et al., 2020). The evolving field of precision agriculture is particularly
noteworthy, as it leverages extensive data sets and data-driven insights to inform and optimize
farm management practices. As data volumes increase exponentially, the need for advanced
methods to manage, analyze, and interpret these data becomes critical (Rub, 2012).
Technologies like the Global Positioning System (GPS), Geographic Information Systems
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(GIS), and remote sensing have become instrumental in precision agriculture, facilitating site-
specific management through high-resolution spatial data.

Precision agriculture enables farmers to adapt management practices to the specific needs of
individual field areas, thereby maximizing resource use efficiency and improving crop
productivity (Chandra Pandey et al., 2021). Remote sensing, as a central tool in this approach,
involves acquiring and analyzing data from sensor systems that detect and measure energy
patterns without physical contact. This technology provides valuable information about
the physical characteristics of the environment and facilitates efficient data collection across
large areas. Incorporating remote sensing data into crop modeling has proven effective for
evaluating regional yields and supporting decision-making in farm management (Kasampalis
et al. 2018).

One of the most critical outputs derived from remote sensing is vegetation indices, which are
essential for tracking changes in vegetation cover and health over time (Aparicio et al., 2002).
These indices, often calculated using spectral data, provide insights into crop conditions and
land cover dynamics, supporting efforts to monitor growth stages, detect stress factors, and
optimize management interventions. Effective farm management practices also influence crop
yield and soil quality at various spatial and temporal scales (Corwin et al., 2006). Thus, the
capacity to assess and manage spatial variability within fields, particularly in soil properties, is
crucial for effective resource allocation and crop performance.

An important consideration in site-specific management is understanding and accurately
characterizing soil variability. Farmers rely on GPS technology to gather spatial data, which is
used to produce detailed maps of soil types, units, and properties. This mapping capability
allows for precise adjustments in irrigation, fertilization, and other field practices to match the
needs of specific soil zones. Selecting an optimal sampling plan is critical in this process, as it
determines the reliability of soil variability assessments and supports informed decision-making
(Vasat et al., 2010). A systematic sampling approach, often using grid-based methodologies,
is advised when initial knowledge of soil variability is limited (Elsharkawy et al., 2022).
Increasing sample density and reducing the spacing between

samples enhance the accuracy of soil variability maps by minimizing kriging variance, thereby
providing a more reliable foundation for precision agriculture (Corwin & Lesch, 2005). The
application of GIS in precision agriculture has expanded, enabling farmers and agronomists to
integrate multi-level data and develop spatial decision-support systems (Narayana & Rao,
1995). This capability supports the detailed analysis of field variations, empowering farmers to
understand where and why yields may differ across their land. Such insights facilitate targeted
interventions that improve both yield consistency and resource efficiency (Seelan, 2003). This
research aims to use GIS and mathematical models to delineate soil data into distinct
management zones in Sheikh Masoud farms, providing insights into the spatial variability of
soil properties. The delineation of these zones aims to facilitate more sustainable precision
agriculture practices.
MATERIAL AND METHODS

Study Area and sampling:

The study area located in Sheikh Masoud village in the Western Desert (28°3915.3'N
30°4049.1°E), Minya Governorate, Egypt. The study area spans approximately 3,260 Fed.
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(sandy soil). Satellite imagery of the area, which shows a digital elevation topographic variation
and the location of studied soil profiles and the representative surface soil samples (Fig. 1).
From 10 soil profiles, thirty-one soil samples were collected (3 samples from each profile) at
depths of 0-30 cm, 30-60 cm and >60 cm, in addition to 13 representative surface samples, that
were selected to represent physiographic diversity. The sampling distribution is illustrated in
(Fig. 1). Most of the studied profiles and the surface soil samples are taken from uncultivated
areas. Morphologically the studied soils are mostly sandy in the texture having medium to
coarse gravels especially in the surface layer. The water source consists of shallow wells with
depths ranging from 10 to 15 meters. Samples were prepared following standard laboratory
procedures, including grinding and sieving through a 2 mm mesh. The analysis covered key
soil properties: pH, measured with a calibrated pH meter according to method ( McLean,
(1982).; electrical conductivity (ECe), measured in past soil extract using a conductivity meter
according to (Rhoades, 1982),exchangeable cations (Ca and Mg) were extracted with 1 M
ammonium acetate, Chloride(Cl") and Bicarbonate (HCOs") according (Carter & Gregorich,
20Y+). Available micro-nutrient elements (Fe, Mn, Cu and Zn) were extracted by DTPA and
measured by atomic absorption spectrophotometry according to (Thomas,1982), (Lindsay &
Norvell, 1978). Location of the soil samples are shown in Table (1).

-Climate data:
Some climate data of the study region area such as temperature, humidity, sunshine hours and
precipitation are shown in Table (2)

Table 1: Location of the soil samples.

Profile Profile
No. Long Lat No. Long Lat
1 30°37°10.6”E 28°41°30.3"N 6 30°34°39.0”E 28°40°43.6"N
2 30°36°43.5”E 28°41°34.6"N 7 30°35°10.9”E 28°40°36.7"N
3 30°36°07.4”E 28°41°37.6”N 8 30°35°40.1”E 28°40°46.7°N
4 30°35°31.7E 28°41°36.1”N 9 30°35°52.4”E 28°40°45.7”N
5 30°34°53.9’E 28°41°07.5"N 10 30°36°25.1”E 28°40°38.6"N
Table 2: Climate data for the study region.
Average Precipitation Sunshine
Month Temperatu?’e (°C) (nF:m) Hours HU{T/i?ity
January 21 0.5 8 30
February 23 0.7 9 28
March 26 1.7 10 25
April 30 0.3 11 22
May 35 0 12 20
June 39 0 12.8 18
July 39 0 12.8 18
August 38 0 12.5 18
September 35 0 11 20
October 31 0.2 10 22
November 26 0.5 9 25
December 22 0.4 8 30

Climate-Data.org and World Bank’s
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-Irrigation water source:

The source of irrigation water is shallow wells with depths ranging from 10 to 15 meters. Seven
water samples were collected and analysis in the laboratory of Soil Department at Faculty of
Agriculture, Ain Shams University, to measure some chemical properties (pH, Ec, Ca, Mg,
HCOz and CI) as shown in Table (3).

Table 3: Irrigation water analysis

ECe H Ca Mg HCOs ClI Fe Mn Cu Zn
(dS/m) P meg/l meg/l meg/l meg/l mg/l mg/l mg/l (mg/l)
981 634 026 468 048 446 0.29 049 0.03 0.20
473 637 084 118 0.28 24 013 0.22 0.01 0.09
324 637 044 140 0.24 1 0.10 0.16 0.01 0.07
336 636 102 100 020 1.04 0.10 0.17 0.01 0.07
557 636 080 210 038 204 0.17 0.28 0.02 0.11
562 639 068 222 016 208 0.17 0.28 0.02 0.12

487 639 058 236 024 168 014 024 0.02 0.10
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Fig. 1: Map of the study area with sampling points and profiles and Digital elevation
model illustrating topographic variation in the studied area
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GIS and mathematical model:

GIS and mathematical models were employed for spatial analysis of soil properties across the
study area (Webster and Oliver (2007). Spatial interpolation techniques, particularly IDW and
Kriging, are fundamental methods for predicting values at unsampled locations in GIS
applications. IDW posits that each measured point has a local influence that declines over
distance, operating on the principle that closer samples carry more weight than distant ones. In
contrast, Kriging is a geostatistical method that considers both the distance and spatial
arrangement of measured points, incorporating spatial autocorrelation and statistical
relationships among the measured points. While IDW is computationally simpler and works
well with densely sampled data, Kriging often provides more accurate predictions and
uncertainty estimates, especially when dealing with irregularly spaced samples and anisotropic
spatial patterns (Li & Heap, 2014). Inverse Distance Weighting (IDW) Interpolation estimated
unknown values based on sample proximity. For any target location x, the interpolated value

Z(x) is given by:
zn Z(xi)p
. d(xxi)
Z(x) = =

1
i=1 d(x,xi)P

Where, Z(x;)is the observed value at point x;, d(x, x;)is the distance to the target location x,
and ppp is a power parameter, set to 2 for accuracy. The Kriging Model applied a spatial
interpolation method accounting for spatial correlation among data points. The estimated value
Z(x)at x is calculated as:

z(x) = Z Ai Z(xi)
i=1

Where, A; are weights assigned to each observed value Z(x;). These weights were derived from
the semi variogram model, which characterizes spatial dependency and optimizes interpolation.
Soil Salinity Calculation in each zone was determined by summing EC values across samples
in the zone. Total salinity S was calculated as:

n
S= Z CEi
i=1

Where, EC; is the salinity of each sample, and n is the number of samples in that zone.
Classification of management zones based on EC and pH values divided the study area into
four zones:

ds
Good Nutrient if EC < SE,pH 6.5—7.6
ds
ones Moderate if 8 <EC < IZE,pH >7.6
ds
Low if EC 212—
m

RESULTS AND DISCUSSION

Soil chemical properties:

The Electrical conductivity (Ece): Distribution map shows elevated salinity in northeastern
areas with ECe levels up to 14.3 dS/m, indicating potential remediation needs, whereas western
regions with ECe values between 4 and 7 dS/m are more suitable for farming (Fig. 2).
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Fig. 2: Soil Salinity distribution map

Soil pH: Values of soil pH are shown in (Fig. 3), ranged from 7.23 to 8.0, indicating moderate
to high alkalinity. Higher pH areas were associated with calcium carbonate deposits.
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Fig. 3: Soil pH distribution map

Chloride: It concentration, particularly high in the east (up to 1,142 meg/L), as seen in (Fig. 4).

Calcium: Levels of calcium peaked at 178 meg/L in eastern sections. (Fig. 5).
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Fig.4: Chloride concentration map
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Fig.5: Calcium distribution map
Magnesium: It reached 432 meg/L in the southeast, as shown in (Fig. 6)

In (Fig.7) the highest level of bicarbonate is in the range of 16.8 - 18.4 meg/l, while the lowest
level is in 4.0 - 5.6 meg/Il. (Carter & Gregorich, 2020).
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Fig.6: Magnesium distribution map
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Fig.7: Bicarbonate distribution map

Micronutrient elements : Available micronutrient elements as shown in Table 3, the data
indicates (Fig.8), that available iron range from 0.007 to 1.453 mg/L, with the highest level
being 1.453 mg/L and the lowest level being 0.007 mg/L (Rohr, Brandenburg, & Brunner-
La Rocca, 2023), it is evident (Fig.9) that the available copper concentration levels range from
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0.0284 mg/L to 0.301 mg/L, with the highest level being 0.301 mg/L and the lowest level being
0.0284 mg/L (Fagnano et al., 2020), it is evident(Fig.10) that the available zinc levels range
from 0.0189 mg/L to 0.605 mg/L, with the highest level being 0.605 mg/L and the lowest level
being 0.0189 mg/L (Saleem et al.,2022) and it is evident (Fig.11) that the available manganese
levels from 0.0083 mg/L to 4.811 mg/L, with the highest level being 4.811 mg/L and the lowest
level being 0.0083mg/L(Khoshru et al., 2023), highest level being 4.811 mg/L and the lowest
level being 0.0083mg/L(Khoshru et al., 2023).
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Fig.8: Iron distribution map
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Fig.11: Manganese distribution map
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Table 4: Some chemical properties and available micronutrients of soil samples.

Depth ECe oH Ca Mg HCOs ClI Fe Mn Cu Zn
dS/m meg/l meg/l  meg/l  meg/l mg/l mg/l mg/l (mg/1)
0-30 404 75 72 46 4 14  0.327 0.388 0.246 0.134
30-60 492 76 54 80 8 10 0.469 0.078 0.333 0.179
>60 49 748 70 22 6 20 0323 0.118 0.354 0.097
0-30 853 7.78 30 36 4 34 1453 0.008 0.301 0.062
30--60 112 7.78 40 32 10 60 0508 0.104 0.341 0.550
>60 147 792 42 30 10 84 0.660 2.462 0.331 0.016
0-30 404 75 64 108 10 170  0.398  0.080 0.194 0.019
30--60 492 76 8 212 10 292 0.467  0.058 0.093 0.030
>60 49 748 40 180 10 188 0.834 0.145 0.096 0.051
0-20 993 79 22 20 46 1.090 0.085 0.139 0.025
20--40 569 784 44 106 312 0309 0.222 0.195 0.008
40-60 44 744 100 102 224  0.040 0.142 0.189 0.065
>60 422 766 50 110 238 0.373 0.316 0.131 0.110
0-30 499 7.7 40 40 16 0493 0.233 0.048 0.125
30-60 29 766 48 10 10 0.356  0.203 0.098 0.025
>60 143 7.7 64 36 76 0498 3.112 0.159 0.126
0-30 86 757 74 6 32 0673 0.161 0.134 0.080
30-60 39 821 34 104 200  0.330 0.209 0.094 0.142
>60 39.8 817 50 68 204 0354 0.164 0.105 0.032
0-30 876 723 112 338 10 532 0.371  1.000 0.131 0.086
30-60 814 74 70 400 16 500 0.478 0.389 0.015 0.058
>60 422 74 216 80 14 254 0.385  0.299 0.118 0.011
0-30 112 76 54 54 8 54  0.959  3.407 0.128 0.027
30--60 5.27 8 46 18 8 8 0.300  0.893 0.029 0.056
>60 538 7.69 50 30 6 12 0310 0.918 0.007 0.232
0-30 564 7.8 46 22 6 10 0422 1.183 0.125 0.140
30-60 148 796 52 34 4 78 3188 4.034 0.105 0.667
>60 24.9 8 50 54 10 112 0.374 4795 0.000 0.030
0-30 392 73 50 268 20 246 0.555  3.203 0.028 0.343
30-60 793 75 44 26 10 30 0375 2967 0.123 0.309
>60 741 73 44 64 8 30 0.640 0.554 0.009 0.353
563 7.69 48 32 14 20 0.484 2.260 0.092 0.045
143 738 70 24 10 64  0.007 2.698 0.078 0.317
265 748 60 158 12 138 0.347  2.812 0.159 0.049
68.2 74 164 236 18 672 0.243 0.928 0.138 0.252
628 747 178 112 16 398 0.563  3.999 0.150 0.468
427 747 138 194 20 260 0.644 43811 0.236 0.355
356 784 52 128 16 176  0.629  2.227 0.226 0.605
6.16 7.71 46 50 14 16 0356  1.657 0.138 0.286
386 7.74 58 134 16 196 0.404  1.939 0.156 0.211
131 7.25 106 340 14 1142 0.560  3.187 0.181 0.340
214 774 40 94 16 514 0446 1.874 0.226 0.336
778 79 64 286 18 526 0.956  0.365 0.220 0.173
100 7.5 60 432 14 760 0.391  3.567 0.193 0.189

B =
o BIG|w|l~o|5 |||

el
SRR IBlojo|No|jo|swiN -

Interpolation models and validation:

The interpolation models provided distinct estimates of soil property distribution across Sheikh
Masoud. The Kriging model produced smoother, more accurate surfaces due to its consideration
of spatial correlations, validated by calculating Root Mean Square Error (RMSE). Defined as:
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RMSE = j% Z(Z(xi) — Z(xi))?
i=1

where Z(x;) is the observed value, Z(x;) is the interpolated value, and nnn is the number of
points, the RMSE was 1.5 for Kriging, outperforming the 2.3 RMSE for IDW.

The data was collected from the analysis results and presented and analyzed using the
Geographic Information System (GIS) program to show the different soil units (Brevik et
al., 2016; Pesi¢ -Mikulec et al., 2019; and Sishodia et al., 2020)

Delineation of Management Zones:

Based on the chemical analyses data of soil samples were shown in Table (4) and Fig. (12).
Sixteen management zones were identified: zone 1 (52.4% of the area) is classified as "Non-
Salin (2.9-5.2 dS/m), good micro-nutrient and pH >7.6", indicating it has favorable soil
conditions for agriculture, zone 2 (2.4%) is "Non-Saline, good micro-nutrient and pH >7.6",
also suitable for agriculture, zone 3 (7.6%) is "Slightly Saline (5.3-20.0 dS/m), good micro-
nutrient and pH >7.6", which may require some salinity management techniques, zone 4
(14.3%) is "Slightly Saline, good micro-nutrient and pH >7.6", similar to Zone 3., zone 5 (5.4%)
is "Slightly Saline, Moderate micro-nutrient and pH >7.6", which may need more careful
nutrient management, zone 6 (12.2%) is "Moderately Saline (20.1-60.0 dS/m), Low micro-
nutrient and pH >7.6", indicating the need for salinity and nutrient amendments, zone 7 (1.9%)
is "Moderately Saline, Good micro-nutrient and pH >7.6", a relatively better zone for
agriculture, zone 8 (3.0%) is "Moderately Saline, Moderate micro-nutrient and pH >7.6", with
similar requirements as Zone 6, zone 9 (5.9%) is "Moderately Saline, Moderate micro-nutrient
and pH >7.6", also in need of salinity and nutrient management, zone 10 (2.1%) is "Moderately
Saline, Low micro-n utrient and pH <7.6", the most challenging zone for agriculture, zone 11
(0.2%) is "Strongly Saline (>60.0 dS/m) , good micro-nutrient and pH <7.6", requiring
significant reclamation efforts, zone 12 (0.1%) is "Strongly Saline, good micro-nutrient and pH
>7.6", also highly saline, zone 13 (0.3%) is "Strongly Saline, Moderate micro-nutrient and pH
>7.6", with similar challenges as Zone 11 and 12, zone 14 (3.3%) is "Strongly Saline, Moderate
micro-nutrient and pH >7.6", another highly saline zone, zone 15 (0.4%) is "Strongly Saline,
Low micro-nutrient and pH <7.6", the most unfavorable zone for agriculture, zone 16 (0.3%)
is "Strongly Saline, Low micro-nutrient and pH >7.6", also highly saline.

According to the study's results, and from Fig. 12, it could be recommended as follows:

-The most suitable zones for agriculture would be Zones 1, 2, and 7, which have good micro-
nutrient levels and pH conditions. These zones could be suitable for various high-value crops:
vegetable crops such as

tomatoes, peppers, and leafy greens according to (Shahbaz and Ashraf, 2013); fruit trees such as
citrus, olives, and pomegranates consistent with (Munns, R., & Tester, M., 200A); cotton
according to (Ashraf, 2002), potentially with the implementation of drip or sprinkler irrigation
systems to manage salinity.
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- The more saline and nutrient-deficient zones (6, 8, 9, 10, 11, 12, 13, 14, 15, and 16) would
require  special soil management practices, such as the application of micro-nutrient
fertilization and leaching, as well as the implementation of advanced irrigation techniques like
subsurface drip systems to leach salts and improve the soil profile, and for these zones, start
with salt-tolerant forage crops and halophytic plants like Hordeum, Atriplex, and Medicago to
help improve the soil, as suggested by (Qadir et al. 2001); grow salt-resistant shrubs and trees
to gradually reclaim the land according to (Flowers and Colmer, 2008) and (Rengasamy 2006).
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Fig. 12: Distribution of soil management zones in Sheikh Masoud village.

CONCLUSION
From this study, the following can be summarized: the study has demonstrated that GIS and
mathematical modeling are highly effective for delineating soil management zones, allowing
for precision agricultural practices tailored to the unique characteristics of Sheikh Masoud’s
soil. The spatial variability of electrical conductivity (Ece) and pH, with ECe ranging from 4 to
14.3 dS/m and pH between 7.23 and 8.0, provided a basis for classifying the study area into
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sixteen management zones. These zones were linked to specific crop recommendations and
irrigation, enhancing water-use efficiency and productivity. Good Nutrient Zones, with low
ECe and optimal pH, were found suitable for high-value,while Moderate and Poor Zones,
characterized by higher salinity, were recommended for salt-tolerant crops or soil amendments
to address saline conditions. The use of both IDW and Kriging models, validated by RMSE
calculations, enabled accurate interpolation of soil properties, with Kriging proving especially
reliable due to its spatial correlation, achieving an RMSE of 1.5.
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