تقییم التفاعل ما بین بیانات تجریبیة ومحاکاة للتنبؤ بقوة الشد لمحراث قلاب مطرحی

نوع المستند : Original Article

المؤلف

1 باحث، معهد بحوث الهندسة الزراعیة،مرکز البحوث الزراعیة.

2 أستاذ مساعد بجامعة شقراء بالمملکة العربیة السعودیة.

المستخلص

إن معرفة البیانات عن قوة الشد اللازمة لمعدات الحراثة عامل مهم عند اختیار تلک المعدات لأداء عمل مزرعی محدد. وحیث أن قیاس قوة الشد للمحراث القلاب المطرحی حقلیا یتطلب ترتیبات خاصة، لذا من المهم تطویر نماذج یمکن الاعتماد علیها فی تقدیر هذه القوى. فی هذا البحث تم توظیف التفاعل ما بین بیانات تجریبیة ومحاکاة  للتنبؤ بقوة الشد لمحراث قلاب مطرحی، حیث تم تطویر نموذجین مبسطین یعتمدا على الشبکات العصبیة الاصطناعیة والارتداد الخطی المتعدد. تم استخدام ورقة عمل طورت بواسطة (Godwin et al., 2007) للحصول على قوة الشد لمحراث قلاب مطرحی. وتعتمد ورقة العمل  فی حسابات قوة الشد على ثلاثة أجزاء وهی بیانات عن خصائص المحراث وبیانات عن خصائص التربة وبیانات عن متغیرات التشغیل (عمق الحرث وسرعة الحرث). بیانات  خصائص المحراث وبیانات  خصائص التربة  المطلوبة فی ورقة العمل تم الحصول علیها تجریبیا فی هذا البحث من خلال عینات تربة من عدة أماکن بالمملکة العربیة السعودیة، أما متغیرات التشغیل فتم فرضها. وهذه التفاعلات مابین  خصائص التربة وبیانات متغیرات التشغیل أوجدت حوالی 2268  صف من بیانات قوة الشد. هذه البیانات تم استخدام 2172  صف منها فی بناء نموذج الشبکات العصبیة الاصطناعیة والارتداد الخطی المتعدد بمساعدة متغیرات دلیل قوام التربة وعمق الحرث وسرعة الحرث والمحتوى الرطوبی للتربة والکثافة الظاهریة لها، وتم استخدام عدد 96 زوج من البیانات لاختبار النموذجین، ومن النتائج فی مرحلة اختبار النموذجین، وجد أن متوسط الخطأ النسبی بین قوة الشد التی تم التنبؤ بها من خلال نموذجی الشبکات العصبیة والارتداد الخطی المتعدد والشد المحاکی کان 1.86% و -8.966% على الترتیب. وللتحقق من أداء النموذجین المطورین تم إجراء تجربة حقلیة فعلیة باستخدام ذات المحراث القلاب المطرحی الذی استخدمت بیاناته فی ورقة العمل باستخدام ثلاث سرعات حرث عند عمق حرث واحد، وأوضحت النتائج أن هناک فرق بین قوة الشد المقاسة والمتنبأ بها من النموذجین المطورین، حیث وصل متوسط الخطأ النسبی إلى حوالی 5.19% و 12.32% عند استخدام نموذج الشبکة العصبیة ونموذج الانحدار الخطی المتعدد على الترتیب. ومن خلال هذه النتائج یمکن استخدام نموذج الشبکة العصبیة فی استکشاف قیم الشد لمحراث قلاب مطرحی تحت ظروف تربة وتشغیل مختلفة، ویمکن استخدام أی من النموذجین کأداة تقییم فی عملیات إدارة المیکنة الزراعیة.

الموضوعات الرئيسية


Abas, H., A. Iman and A. Masoumi (2008). Effect of plow share type on moldboard plow performance under different moisture contents and plowing depths. Iranian Journal of Agricultural Sciences, 39(1):87-97.
Aboukarima, A. M.  (2007). Draft models of chisel plow based on simulation using artificial neural networks. Misr J. Ag. Eng., 24(1): 42-61.
Aboukarima, A.M. (2004). Artificial neural networks configuration for predicting performance of tillage implements under Egyptian conditions. PhD Thesis, Agric. Eng. Dept., Faculty of Agric., Ain Shams University, Egypt.
Aboukarima, A.M. and A.F. Saad (2006). Assessment of different indices depicting soil texture for predicting chisel plow draft using neural networks. Alexandria Science Exchange J., 27(2): 170-180.
Aboukarima, A.M., M.N. El Awady, A.G. El Kabany and M.H.A. Kabeel (2003). Plows performance under Egyptian conditions depicted by artificial neural networks. Misr J. Agric. Eng., 20 (4): 919-936.
Al-Janobi, A., S. Al-Hamed and A.M. Aboukarima (2010). An excel spreadsheet to estimate performance parameters for chisel plow-tractor combination based on trained an artificial neural network. Bulletin USAMV Agriculture, 67(2):1-9.
Al-Janobi, A.A. and S.A. Al-Suhaibani (1998). Draft of primary tillage implements in sandy loam soil. Applied Engineering in Agriculture, 14(4):343– 348.
Al-Janobi, A.A., A.M. Aboukarima and K.A. Ahmed (2001). Prediction of specific draft of different tillage implements using neural networks. Misr J. Agric. Eng., 18 (3): 669-714.
Aluko, O.B. and D.A. Seig (2000). An experimental investigation of the characteristics of and conditions for brittle fracture in two-dimensional soil cutting. Soil & Tillage Research, 57:143-157.
Arvidsson, J. And  O. Hillerstrom (2010). Specific draft, soil fragmentation and straw incorporation for different tine and share types. Soil & Tillage Research, 110:154–160.
Arvidsson, J., T. Keller and K. Gustafsson (2004). Specific draft for moldboard plow, chisel plow and disc harrow at different water contents. Soil & Tillage Research, 79:221–231.
ASAE Standards (1984). ASAE D203.4: agricultural machinery management data. ASAE, St. Joseph, MI, pp. 213–220.
ASAE Standards (1997). ASAE D497.3: agricultural machinery management data.  ASAE, St. Joseph, MI, pp.363–370.
Chung, S.O., K.A. Sudduth, C.Plouffe and  N.R. Kitchen (2008). Soil bin and field tests of an on-the-go soil strength profile sensor. Transaction ASABE, 51:5-18.
El Awady, M.N., A.G. El Kabany, M.H.A. Kabeel, and A.M. Aboukarima (2003). Relative importance of variables affecting chisel-plow performance using neural networks. The 11th Conf. of Misr Society Agric. Eng., 15-16 October, Rice Mech. Centre, Meet El Deeba, Kafer El Sheikh Governorate: 395-407.
El Awady, M.N., A.G. El Kabany, M.H.A. Kabeel and A.M. Aboukarima (2004). Predicting unit draft of tillage implements using statistical models and neural networks. The 12th Conf. of Misr Society Agric. Eng., 15-16 October, Alexandria Univ.: 139-249.
El Khadrawy, A.A. (1990). Estimating of used energy in the production of some Egyptian crops. M.Sc. Th., Agric. Mech. Dept., Fac. of Agric., Mansoura Univ.: 71-140.
Elbanna, E.B. (1989). Prediction of specific moldboard plow draft. J. Agric. Sci. , Mansoura Univ., 15 (2):253-265.
Elbanna, E.B. (1992). Tillage tools draft: chisel and moldboard plows. Misr J. Ag. Eng., 9 (4): 491-510.
Formato,  A., S. Faugno and G. Paolillo (2005). Numerical simulation of soil-plow moldboard interaction. Biosystems Engineering, 92 (3):309–316.
Gebresenbet, G., E.Zerbini, A. Astatke and P. Kaumbutho (1997). Optimization of animal drawn tillage implement systems: Part2, development of a reversible plow and a ridger. J. agric. Engng Res.,67:299-310.
Gee-Clough, D., M. McAllister, G. Pearson and D.W. Evernden (1978). The empirical prediction of tractor – implement field performance. J. of Terramechanics, 15(2):81-94.
Gill, W. R. and G. F. Van Den Berg (1968). Soil dynamics in tillage and traction. Agricultural Handbook 316, Washington D. C.; USDA Agricultural Research service.
Godwin, R.J., G. Spoorad  and  P. Leeds-Harrison (1981). An experimental investigation into the force mechanics and resulting solid disturbance of mole plow. J. agric. Engng.  Res., 26: 477-497.
Godwin, R.J., M.J. O’Dogherty, C.Saunders and A.T.  Balafoutis (2007). A force prediction model for moldboard plows incorporating the effects of soil characteristic properties, plow geometric factors and plowing speed. Biosystems Engineering, 97:117–129.
Harrigan, T.M. and C.A. Rotz (1995). Draft relationships for tillage and seeding equipment. Applied Engineering in Agriculture, 11(6):773–783.
Hassan, A.E. and A.S.Tohmaz (1995). Performance of skidder tires in swamps-comparison between statistical and neural network models. Transaction ASAE, 38 (5): 1545-1551. 
Huijsmans, J. F. M., J. G. L. Hendriks and G. D. Vermeulen (1998). Draft requirement of trailing-foot and shallow injection equipment for applying slurry to grassland. J. agric. Engng Res., 71:347-356.
Imara, Z.M.I. (1996). Development a combined machine for primary and secondary tillage under local conditions. PhD Thesis, Agric. Mech. Dept., Faculty of Agric., Tanta Univ., Kafer El-Sheikh:210-227.
KarimiInchebron,  A., S. R. M. Seyedi and R. T. Koloor (2012). Investigating the effect of soil moisture content and depth on the draft, specific draft and drawbar power of a light tractor. International Research Journal of Applied and Basic Sciences, 3 (11): 2289-2293.
Khadr, K. A. A.  (2008). Effect of some primary tillage implement on soil pulverization and specific energy. Misr J. Ag. Eng., 25(3): 731-745.
Kheiralla, A.F., A. Yahya, M. Zohadie and W. Ishak  (2004). Modelling of power and energy requirements for tillage implements operating in Serdang sandy clay loam, Malaysia. Soil & Tillage Research, 78:21–34.
Kushwaha, R.L. and Z. X. Zhang (1997). Artificial neural networks modeling of soil-tool interaction.ASAE Paper No. 97-3067, ASAE, St. Joseph, Michigan, USA: 1-11.
Manuwa, S.I. and Ogunlami M.O. (2010). Soil-tool interaction modeling of parameters of soil profile produced by tillage tools. J. Eng. and Applied Sci. , 5:91-95.
Mouazen, A. M., R. Herman and De B. Josse (2003). Modeling compaction from on-line measurement of soil properties and sensor draft. Precision Agriculture, 4 (2): 203-212.
Mouazen, A.M and H. Ramon (2002). A numerical-statistical hybrid modeling scheme for evaluation of draft requirements of a subsoiler cutting a sandy loam soil, as affected by moisture content, bulk density and depth. Soil & Tillage Research, 63 (3-4): 155-165.
Mouazen, A.M. and M. Neményi (1998).  Review of the finite element modeling techniques of soil tillage. Mathematics and Computers in Simulation, 48: 23-32.
Nadre, R.G. and R.K. Datta (1991). Investigation on forces in three-point linkage of tractor. Journal of Agricultural Engineering, India Society of Agricultural Engineering, Vol. XXVIII, Nos. 1 To 4:254-260.
Oskoui, K. E. and B. D. Witney (1982). The determination of plow draft, part 1: prediction from soil and meteorological data with cone index as the soil strength parameter. J. of Terramechanics, 19: 97–106.
Oskoui, K. E., D. H. Rackham and B. D. Witney (1982). The determination of plow draft: part 2, the measurement and prediction of plow draft for two moldboard shapes in three soil series. J. of Terramechanics, 19: 153–154.
Oskoui, K.E. and S.J. Harvey (1992). Predicting cone index from soil physical properties and organic matter content. ASAE Paper No.92-1056, ASAE St. Joseph, Mich., USA:1-16.
PAES (2001).  Philippine Agricultural Engineering Standard (PAES 121: 2001 Agricultural Machinery – Disk Plow – Specifications, 9 p.

Rahman, A., R.L. Kushawaha, S.R. Ashrafizadeh and S. Panigrahi (2011).  Prediction of energy requirement of a tillage tool in a soil bin using artificial neural network. ASABE Paper No. 111112. American Society of Agricultural and Biological Engineers, St. Joseph, Michigan, USA.

Roul, A.K., H. Raheman, M.S. Pansare and  R. Machavaram (2009).  Prediction of draft requirement of tillage implements in sandy clay loam soil using an artificial neural network. Biosystems Engineering, 104(4): 476-485.
Sahu, R.K. and  H. Raheman (2006). Draft prediction of agricultural implements using reference tillage tools in sandy clay loam soil. Biosystems Engineering, 94 (2):275–284.
Shirgure P. S.  and G. S. Rajput (2011). Evaporation modeling with neural networks–A Research review. International Journal of Research and Reviews in Soft and Intelligent Computing (IJRRSIC), 1(2):37-47.
Shrestha, D. S., G. Singh and G. Gebresenbet (2001). Optimizing design parameters of a moldboard plow.J. agric. Engng Res., 78 (4): 377-389.
Summers, J.D., A. Khalilian and D.G. Batchelder (1986). Draft relationships for primary tillage in Oklahoma soils. Transaction ASAE, 29(1):37-39.
Tohmaz, A.S. and  A. E.  Hassan (1995). Application of artificial neural networks to skidder traction performances. J. of Terramechanics, 32 (3): 105-114.
Tong, J. and B. Z. Moayad (2006). Effects of rake angle of chisel plow on soil cutting factors and power requirements: A computer simulation. Soil & Tillage Research, 88 (1-2): 55-64.
Vesta Services (2000). Vesta Services, Inc. Qnet2000 Shareware, Vesta Services, Inc., 1001 Green Bay Rd, STE 196, Winnetka,  IL 60093.
Ward, M.I. and A.I. Moussa (1997). A comparative study of different tillage methods for optimizing corn production.5th Conf. of Misr Society of Agr. Eng., 9th Sept.1997:173-180.
Zhang, D., Q. Jiang  and X. Li (2005). Application of neural networks in financial data mining. International Journal of Computational Intelligence, 1:106-109.
Zhang, Z.X. and  R. L. Kushawaha (1999). Application of neural networks to simulate soil-tool interaction and soil behaviour. Canadian Agricultural Engineering, 41(2): 119-125.