تحسین مناخ الصوب الزراعیة فى المناطق الحارة والرطبة باستخدام نظام تبرید تبخیری مطور

نوع المستند : Original Article

المؤلفون

1 باحث أول قسم بحوث الزراعات المحمیة - معهد بحوث البساتین – مرکز البحوث الزراعیة - الجیزة - مصر.

2 باحث أول قسم بحوث القوى والطاقة - معهد بحوث الهندسة الزراعیة – مرکز البحوث الزراعیة - الجیزة - مصر.

المستخلص

فى المناطق الحارة الرطبة مثل المناطق الاستوائیة والمداریة والمناطق الساحلیة مثل حوض البحر المتوسط، تعتبر الزراعة فى الصوب الزراعیة فى موسمى الربیع و الصیف الحار والرطب مستحیلة حیث وجود درجة الحرارة العالیة داخل الصوبة التی تسبب أجهاد حراری وعطش للنبات. یهدف هذه البحث إلى دراسة تأثیر نظامی تبرید تبخیری مختلفین على المناخ داخل الصوبة وکذلک إنتاجیة وجودة ثمار نباتات الطماطم. تم استخدام صوبتین متماثلتین من النوع الجمالونی متماثل الانحدار بمحطة بحوث البساتین بالصبحیة-الإسکندریة لزراعة محصول الطماطم خلال موسمی صیف 2014 و 2015. تم تجهیز کل صوبة بنظام تبرید تبخیری وتم عمل تطویر لإحداهما بإضافة مجفف (سیلیکا جل) (نظام تبرید تبخیری مطور) والصوبة الأخرى تم استخدام نظام تبرید الوسادة والمروحة (تبرید وسادة ومروحة) للمقارنة. أظهرت النتائج أن متوسط درجة حرارة الهواء الخارج من الوسادة و هواء الصوبة و الرطوبة النسبیة و الکفاءة و الانخفاض فی الضغط البخاری کانت (21,6 – 28,2 درجة مئویة) و (29,2 – 33,4 درجة مئویة) و (65,2 – 71,4%) و (89,2 -62,1%) و (1,39 – 1,50 کیلو بسکال) لکل من الصوبة ذات التبرید التبخیری المطور و الصوبة ذات تبرید الوسادة والمروحة، على الترتیب. کما انخفضت أعلى درجة حرارة عند الظهر بمقدار 2,9 درجة مئویة للصوبة ذات التبرید التبخیری المطور عن درجة حرارة الجو الخارجی، بینما کانت أعلى بمقدار 1,6 درجة مئویة لصوبة التبرید الوسادة والمروحة. کانت نسبة الزیادة فى المحصول المبکر و عدد الثمار لکل نبات و وزن الثمرة و المحصول الکلى لکل نبات و المحصول الکلى للفدان 14,07 و 9,43 و 8,00 و 18,15 و 18,13 % لصوبة نظام التبرید المطور عن صوبة الوسادة والمروحة فى موسم 2014 بینما کانت نسبة الزیادة 12,41 و 12,98 و 7,90 و 22,06 و 21,97% فى موسم 2015 على الترتیب.

الموضوعات الرئيسية


Abd El-Mageed, A.H.A. and N. Gruda (2009). Performance of different tomato genotypes in the arid tropics of Sudan during the summer season. II. Generative Development. Journal of Agriculture and Rural Development in the Tropics and Subtropics. 110(2): 147–154.
Abdellatif, S.M., M.M.M. Ibrahim and M.M.H. El-Lithy (2010). A comparative study on two different evaporative cooling systems for producing cucumber crop under hot-humid summer conditions. J. Soil Sci. and Agric. Eng., Mansoura Univ., 1 (10):1015-1036.
Adams, S.R., K.E. Cockshull and C.R.J. Cave (2002). Effect of temperature on the growth and development of tomato fruits. Annals Bot. 88, 869-877.
Adil, A.H.; N. Gruda, and B. Geyer (2004). Effects of temperature and grafting on the growth and development of tomato plants under controlled conditions. Rural poverty reduction through research for development and transformation, berlin, October 5-7, 2004.
Afonsoa, M.R.A. and V. Jr. B. Silveira (2005). Characterization of equilibrium conditions of adsorbed silica–gel/water bed. according to Dubinin–Astakhov and Freundlich. Engenharia Térmica (Thermal Engineering), 4(1): 3-7.
Argus, (2009). Understanding and Using VPD. Argus Control System LTD www.agruscontrols.com, Canada V4B 3Y9.
ASHRAE, (2010). Psychrometrics, American Society for Heating, Refrigeration, and Air Conditioning Engineers Fundamentals. SI Ed. Atlanta, USA. Ch 6: 6.1-6.17,
Autogrow, (2012). Vapour Pressure Deficit Calculator in Excel Spreadsheet, Autogrow System Ltd. (www.autogrow.com)
Bhatia, A. B.E. (2012). Principles of Evaporative Cooling System. PDHonline Course M231 (4 PDH). pp. 56. www.PDHonline.org
Bora, A., P. Saini, R. Bora, S. R. Purohit, A. Bora and S. K. Tripathy (2017). Desiccant evaporative cooling system. Intern. J. of Sci. Develop. and Res., (IJSDR), April 2017, 2 (4): 232-335.
Bourouni, K. (2008). Greenhouses Cooling: intelligent technologies using direct contact heat exchangers and challenges of desiccants. Atelier Mediterraneen sur les Nouvelles Technologies de Recyclage des Eaux Non Conventionnelles dans les cultures protégées 28 Avril – 1er Mai 2008.
Davies, P.A. (2005). A solar cooling system for greenhouse food production in hot climates. Solar Energy, 79 : 661-668.
El-Bakhashwan, M.K., G.D.M. Youssef, Salwa S. Hanna and Sh.M. Abdel-Ghafar (2013). Solar energy utilization for regeneration of moist silica gel. Egyptian J. of Agric. Res. 3rd International Conference for Agricultural and Bio-Engineering. (Engineering Application for Sustainable Agricultural Development) – 24 Nov. 2013. 91 (2 B) 647 – 671.
Evaptainers, (2014). The Science of Evaporative Cooling. http://www.Evaptainers .com /updates/2014/8/6/the-sciance-of-evaporative-cooling, August 7, 2014.
Farmahini, F. M.; S. Delfani and J. Esmaeelian (2012). Exergy analysis of evaporative cooling to select the optimum system in diverse climates. Energy, 40: 250–257
Franco, A., D.L. Valera, and A. Peña (2014). Energy efficiency in greenhouse evaporative cooling techniques: Cooling boxes versus cellulose pads. Energies, 2014, 7: 1427-1447.
Garzoli, K.V. (1989). Cooling of greenhouses in tropical and sub-tropical climates. Acta Horticult. 257: 93–100.
Ho, L.C. (1996). The mechanism of assimilate partitioning and carbohydrate compartmentalization in fruit in relation to the quality and yield of tomato. J. Exp. Bot. 47: 1239-1243.
Hurd, R.G. and C.J. Graves (1985). Some effects of air and root temperatures on the yield and quality of glasshouse tomatoes. Journal of Horticultural Science 60: 359-371.
Islam, M.T. (2011). Effect of temperature on photosynthesis, yield attributes and yield of tomato genotypes. Int. J. Expt. Agric. 2(1):8-11, (January 2011)
Jamaludin, Diyana; D. Ahmad; R. Kamaruddin; and H.Z.E. Jaafar (2014). Microclimate inside a tropical greenhouse equipped with evaporative cooling pads.  Pertanika J. Sci. & Technol., 22 (1): 255 - 271 (2014).
Jones, Jr. B. (2007). Tomato Plant Culture: In the Field, Greenhouse, and Home Garden, 2nd Boca Raton, FL: CRC Press. Taylor & Francis Group, LLC.
Joudi, Kh.A. and M.M. Hasan (2013). Cooling and heating a greenhouse in Baghdad by a solar assisted desiccant system. J. Eng., 933, 8 (19) 933-951.
Kalloo, D. (1985). Tomato. Allied Publishers Private Ltd. 13/14 Asaf Ali Road, New Delhi-110002. p 172-202.
Katsoulas, N.; D. Savas; I. Tsirogiannis; O. Merkouris; and C. Kittas (2009). Response of an eggplant crop grown under Mediterranean summer conditions to greenhouse fog cooling. Sci. Hortic., 123: 90–98.
Kittas, C.; T. Bartzanas and A. Jaffrin (2003). Temperature gradient in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosystems Engineering, 85(1):87-94.
López, A.; D. L. Valera; F. D. Molina-Aiz; and A. Peña (2012). Sonic anemometry to evaluate airflow characteristics and temperature distribution in empty Mediterranean greenhouses equipped with pad–fan and fog systems. Biosyst., Eng. 113: 334–350.
Lychnos, G. (2010). Feasibility of a solar-powered liquid desiccant cooling system for greenhouses. Ph.D. Thesis, AstonUniversity.
Lychnos, G. and P. A. Davies (2008). A solar powered liquid-desiccant cooling system for greenhouses. ActaHortic., 2008.797.11:  International Workshop on Greenhouse Environmental Control and Crop Production in Semi-Arid Regions.
Mishra, G. K., L. Yadav and M. Kumar (2016). A Review of desiccant based cooling systems using silica gel. Imperial J. of Interdisciplinary Res. (IJIR), 2 (12): 1224-1232.
Mehmet, A.D. and H.S. Hasan (2015). Performance analysis of a greenhouse fan-pad cooling system: gradients of horizontal temperature and relative humidity. Journal of Agricultural Sciences. 21: 132-143
Mohammad, A.T., S.B. Mat, M.Y. Sulaiman, K. Sopian, and A.A. Al-Abidi (2013). Historical review of liquid desiccant evaporation cooling technology. Energy and Buildings, 67: December 2013: 22–33.
Montero, J.I. (2006). Evaporative cooling in greenhouses: Effect on microclimate, water use efficiency, and plant response. ActaHortic. 719: 373–384.
Montero, J.I., and I. Segal (1993). Evaporative cooling of greenhouses by fogging combined with natural ventilation and shading. Proc. of the Intern. Workshop on Cooling Systems for Greenhouses. Agritech, May 2-6.
Nguyen, T. N., L. H. Tang, Y. K. Peng, J. Y. Ni, and Y. N. Chang (2015). Effects of Composite Inorganic, Organic Fertilizer and Foliar Spray of Multi-nutrients on Growth, Yield and Quality of Cherry Tomato. J. Agr. Sci. Tech., 17: 1781-1788.
Pressman, E., M.M. Peet and D.M. Pharr (2002). The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Annals of Botany. 90: 631-636.
Rafique, M.M., Sh. Rehman, A. Lashin and N. Al-Arifi (2016). Analysis of a solar cooling system for climatic conditions of five different cities of Saudi Arabia. Energies, 2016, pp, 13.
Saeed, A., Kh. H., A. A. Khan and S. Iqbal (2007). Heat tolerance studies in tomato (Lycopersicon esculentum Mill.). Int. J. Agri. Biol., 9 (4): 649–652.
Sato, S., M.M. Peet and J.F. Thomas (2000). Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell Environ 23:719-726.
Sethi, V.P. and S.K. Sharma (2007). Survey of cooling technologies for worldwide agricultural greenhouse applications. Solar Energy. 81: 1447–1459.
Shamshiri, R., and W.I. Wan Ismail. (2014). Data acquisition for monitoring vapor pressure deficit in a tropical lowland shelter house. Plant Prod. Res. J. Appl. Sci., Engin. and Techn., 7(20): 111-122.
Shamshiri, R., C.M. Hasfalina, A.J. Zakaria, P.Van. Beveren, D.B. Ahmad, W.I.W. Ismail (2016). Membership function model for defining optimality of vapor pressure deficit in closed-field cultivation of tomato. Acta Hort. (ISHS) 63: 1-7.
Singh, R.P., P.V. Vara Prasad, K. Sunita, S.N. Giri and K.R. Reddy (2007). Influence of high temperature and breeding for heat tolerance in cotton. Adv. Agron., 93: 313–85
Tahat, M. A. (2001). Heat–pump/energy-store using silica gel and water as working pair. Applied Energy, 69: 19-27.
Vollenweider, P. and M.S. Gunthardt-Goerg (2005). Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ. Pollut. 137:455-465.
Vox, G.M. Teitel, A. Pardossi, A. Minuto, F. Tinivella and E. Schettini (2010). Sustainable Greenhouse Systems. 2010. Nova Science Publishers, Inc., 79 pp.
Wikipedia, (2013). The free encyclopedia. http://en.wikipedia.org /wiki/Silica_gel.
Youssef, G.D.M. (2007). A thermal storage system for greenhouse energy conservation. Ph.D. Thesis, Fac. of Agric., AlexandriaUniv.
Youssef, G.D.M. and Yakout, T.R. (2015). Effect of externally mounted shading screen on microclimatic conditions of greenhouse cantaloupe crop equipped with evaporative cooling system. J. Soil Sci. and Agric. Eng., Mansoura Univ., 6 (5): 667-685., 2015.
Youssef, G.D.M., T. R. Yakout, and Doaa, M. Mostafa (2015). Improving performance of the evaporative cooling system inside the greenhouses and its effect on tomato productivity. Alex. Sci. Exch. J. 36(1):80-94.