تأثیر محسن التربة علی المحتوی الرطوبی للأرض الرملیة وإنتاجیة الفول السودانی تحت معدلات میاه ری مختلفة

نوع المستند : Original Article

المؤلف

باحث اول – معهد بحوث الهندسة الزراعیة مرکز البحوث الزراعیة - وزارة الزراعة - شارع نادی الصید – الدقی – جیزة.

المستخلص

لدراسة تأثیر إضافة محسن للتربة على المحتوى الرطوبی للتربة الرملیة وإنتاجیة الفول السودانی تحت معدلات ری مختلفة اجریت تجربة حقلیة خلال موسمی نمو صیفیین 2015 و 2016 فی قریة عبد المنعم ریاض (خط عرض 8 "41'  30 ° شمالا، خط الطول 0 "18'  30 °شرقا ، و20 مترا فوق مستوى سطح البحر)، بمنطقة البستان، محافظة البحیرة، مصر. کما تم اختبار صحة نموذج لمحاکاة للتنبؤ بالتغیرات فی المحتوی الرطوبی للتربة مع الزمن. اشتملت الدراسة علی اربعة مستویات من محسنات التربة ( SC0 بدون اضافه و: SC1 1طن/الفدان و: SC2 2طن/الفدان و: SC3 3طن/الفدان ) وکذلک ثلاثة معدلات میاه ری (الری الکامل: 100٪، الری بمعدل نقص معتدل: 75٪ الری بمعدل نقص شدید: 50٪ من البخرنتح المرجعی) قیم البخرنتح (ETo) المرجعیة اتخذت  على اساس قیاسات وعاء قیاس البخر النوع أ       US Class A-Pan. وصنف الفول السودانی المستخدم قی التجربة هو اسماعیلیة 2.
أشارت النتائج إلى أن أداء نظام الری بالرش فی الموقع التجریبی یعتبر مقبولا.أن إضافة محسن التربة بالمعدلات المذکورة  إلى التربة الرملیة ادت الی   خفض الکثافة الظاهریة وقیم معامل التوصیل الهیدرولیکی المشبعة وزیادة محتویات الرطوبة المشبعة، والسعة الحقلیه، ونقطة الذبول وبالتالی زیادة الماء  المتاح، وقیم دخول الهواء.زیادة محتویات التربة الرطوبة . أثبت نموذج المحاکاة المختبر أنه دقیق للتنبؤ بالتغیرات فی محتویات رطوبة التربة مع مرور الوقت وکذلک توزیع الرطوبة داخل قطاع التربة. وکان متوسط قیم کمیة میاه الری المضافه خلال موسم النمو  2986 و 2240 و 1506 م 3 / فدان للمعاملات و 100 و 75 و 50٪ من البخر نتح على التوالی.  وقد تأثرت العوامل المتغیرة المختبرة للمحصول ومکوناته لمحصول الفول السودانی معنویا بشکل ملحوظ بالمعاملات المختبرة فی ظل الظروف التجریبیة. وقد أدى اضافة کمیة میاه ری مساویه لـ 100٪ من البخرنتح  مع 2 طن محسن تربة/ فدان من محسن التربة إلى إنتاج أعلى محصول قرون بلغت 1.83 و 1.89 طن / الفدان ومحصول قش بلغت 1.33 و 1.32 طن / الفدان لمحصول الفول السودانی المزروع فی التربة الرملیة.. کما اشارت النتائج ایضا إلى أنه یمکن تحقیق متوسط انتاجیة وحدة المیاه بمقدار 0.65 کجم قرون / م 3 و 0.43 کجم من القش / م 3 من التفاعل بین 100٪ ETo * SC2. وأظهرت النتائج أنه فی التربة الرملیة ذات القدرة الضعیفة على الاحتفاظ بالماء، یمکن تحسین هذه القدره والحصول على انتاجیة عالیة مع إضافة محسن التربة مع عمق الماء المضاف یساوی 100٪ کما یمکن تقلیل تأثیر إلاجهاد المائی علی النبات عند الری بمستویات منخفضة من ماء الری .

الموضوعات الرئيسية


Abdrabbo A. Abou Kheira, 2009. Macro-management of deficit-irrigated peanut with sprinkler irrigation. Agricultural Water Management 96 (2009) 1409–1420.
Allam; Kh. A., 2004. Simulation model of water movement in sandy soils under trickle irrigation conditions. Ph.D. Alex. Uni. Fac. of Agri. – Saba Basha: 32-50.
Al-Omran A M.; A. R. Al-harbi; M. A. Wahb-allah; M. Nadeem; and A. Al-eter., 2010. Impact of irrigation water quality, irrigation systems, irrigation rates and soil amendments on tomato production in sandy calcareous soil. Turkish Journal of Agriculture and Forestry 34 (2010): 59-73
Andry H.; T. Yamamotoa; T. Iriea; S. Moritania; M. Inouea and H. Fujiyama., 2009 Water retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality. Journal of Hydrology 373 (2009) 177–183
ASAE standard. 1988. Procedure for sprinkler distribution testing for research proposes. ASAE stdd. 35th Ed., ASAE: 501-503.
Attia, M.M. and K.M. Hammad., 1999. Drip irrigation scheduling of peanut in sandy soils. Mansoura Univ. J. Ag. Sci. 24 (11): 7059-7069.
Badawi F.Sh.F., A.M.M. Biomy and A.H. Desoky, 2011. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Faculty of Agriculture, Ain Shams University. Annals of Agricultural Science (2011) 56, 17–25
Beheiry, G.; Gh. S.; Soilman, A.A.; Nadia, F.; El-Aasar and I.H.; El-Bagouri., 1997. Accumulation and residual effects of natural amendments on chemical properties of some desert soil under saline water irrigation. International Symposium of Salt Affected Soils, pp. 395-405.
Benami, I. and A. Ofen., 1984. Irrigation Engineering. Irrigation Engineering Publications (IESP), Haifa, Israel.
Bhardwaj, A.K.; I.; Shainberg, D.; Goldstein, D.N.; Warrington and G.J.; Levy., 2007. Water retention and hydraulic conductivity of cross-linked polyacrylamides in sandy soils. Soil Science Society of America Journal 71, 406–412.
Brouwer, C.; K. Prins and M. Heibloem., 1989. Irrigation water management: irrigation scheduling. Training manual no. 4 chapter 3 FAO, Rome, Italy, 28-29.
Black, C. A.; D. D. Evans; L. E. Ensminger; J. L. White; F. E. Clark and R. C. Dinauer., 1985. Methods of soil analyses. Seven Printing. Amer. Soc. of Agro. Madison, Wisconsin USA. 425-455
Bogino, P.; E. Banchio; L. Rinaudi; G. Cerioni; C. Bonfiglio and  W. Giordano., 2006. Peanut (Arachis hypogaea) response to inoculation with Bradyrhizobium sp. In soils of Argentina. Ann. Appl. Biol. 148, 207–212.
Borg, H. and D. Grimes. 1986. Depth development of roots with time: an empirical description. Trans. ASAE 29, 194–197.
Bouranis D.L.; A. G. Theodoropoulus and J.B. Drossopoulus., 1995. Designing synthetic polymers as soil conditioners. Commune Soil Sci Plant Anal 26:1455–1480.
CoHort Software. 2005. Costat Statistical package (version 6.311), P.O.Box 1149, Berkeley, CA, 94701, USA.
Chatzoudis G. K. and F. Rigas., 1999.  Soil salts reduce hydration of polymeric gels and affect moisture characteristics of soil. Commune Soil Sci Plant Anal 30:2465–2474
Doorenbos, J. and W. O. Pruitt., 1977. Guidelines for predicting crop water requirements. FAO Irrig. Drain. Paper no: 24, FAO, Rome, Italy, p. 97-100.
Doorenbos, J. and A. H Kassam., 1986. Yield response to water. FAO Irrig. Drain. Paper no: 33, FAO, Rome, Italy, p. 97-100
Doorenbos, J. and W. O. Pruitt., (1992). Calculation of Crop Water Requirement. In CropWater Requirement. FAO of The United Nation, Rome, Italy, pp. 1–65.
El-Shafei A.;  Kh. A. Allam and T. K. Zin El-Abedin., 2008. Heterogeneity analysis of sprinkler irrigation in peanut fields. Misr J. Ag. Eng., 25(1): 58- 86
El-Maghraby, S.E.; F.A.; Hashem and M.M.; Wassif., 1996. The use of sulphur and organic manure for controlling soil salinity pollution under high saline water irrigation. Egypt J. Soil Sci., 36, 269-288.
Günes T. 2007. Effect of polymer on seedlings survival and growth of transplanted tomato under water stress. Asian J Chem 19(4):3208–3214
Han, Y.G.; P.L. Yang; Y.P Luo; S.M. Ren; L.X. Zhang and  L. Xu,  2010. Porosity change model for watered super absorbent polymer-treated soil. Environ. Earth Sci. 61, 1197–1205.
Keller, J. and R. D. Bliesner. 1990. Sprinkle and trickle irrigation, Van Nostrand Reinhold, New York, ISBN: 0-442-24645-5.
Khalifa, H.E.; A.M, El-Gindy; G.A. Sharaf and Kh. A. Allam. 2004. Simulation water movement in sandy soil under surface point- source emitter: I-Model development. . Misr J. Ag. Eng., 21(2) 341-361
Ismail, S. M. 2002. Design and Management of Field Irrigation System. (in Arabic) Monshaet Al-Maaref Alex., 1st Ed.: 167-168.
Leciejewski,  P. 2009. The effect of hydrogel additives on the water retention curve of sandy soil from forest nursery in Julinek. J. Water Land Dev. No. 13a, 2009: 239–247
Lixia Y., Y. Yangb, Z. Chena, C. Guoc, and S. Li 2014. Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering. Ecological Engineering 62 (2014) 27– 32
Molden D.  2003.  A  water-productivity  framework  for  understanding  and  action.In:  Kijne,  J.W.,  Barker,  R Molden,  D.  (Eds.),  Water  Productivity  in  Agriculture:Limits  and  Opportunities  for  Improvement. International Water Management Institute, Colombo, Sri Lanka, pp. 1–18.
Salem N., A. Khater, M.Y. Tayel, and M.A. Matyn, 1990. Effect of soil amendments, irrigation and seeding density on growth of peas and nutrient uptake.  SOIL TECHNOLOGY vol. 3, p. 301-309
Simonne, E. H. and M. D. Dukes, 2010. Principles and practices of irrigation management for vegetables. University of Florida, Hort. Sci. Extension. pp 17-23.
USDA, (2016). Production Estimates and Crop Assessment Division, Foreign Agr. Service, Circular Series FAS, USDA, WAP 11-16, November 2016.
Vara Prasad P.V., V. G. Kakani and H. D. Upadhyaya., 2011. Growth and production of groundnut. Soils and plant growth and crop production vol II
Viero P.W.M.,, K.M. Little, and D.G. Oscroft., 2000. The effect of a soil amended hydrogel on the establishment of a Eucalyptus grandis x E. amaldulens is clone grown on the sandy soils of Zululand. Southern Afr For J 188:21–28
Viero P.W.M., K.E.A. Chiswell, J.M. Theron., 2002. The effect of a soil-amended hydrogel on the establishment of a Eucalyptus grandis clone on a sandy clay loam soil in Zululand during winter. Southern Afr For J 193:65–75
Wassif, M.M., S.E. El-Maghraby, and A.H. Frah, 1997. Application of soil amendments as management practices for sustainable productivity under irrigation with saline water. International Symposium of Salt Affected Soils., pp.328-333.
Xiaolin Y., Y. Chen, S. Pacenk, W. Gao, L, Maa, G. Wanga, P. Yan, P .Sui and  S. T. Steenhuis, 2015. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain. Journal of Hydrology 522 (2015) 428–438.
Yinhong K., S. Khan and X., Ma, 2009. Climate change impacts on crop yield, crop water productivity and food security – A review. Progress in Natural Science 19 (2009) 1665–1674.
Zohuriaan-M, M.J. and K., Kabiri, 2008. Superabsorbent polymer materials: a review. Iran. Polym. J. 17, 451–477.