EXPERIMENTAL AND MATHEMATICAL MODELING STUDY FOR SOLAR DRYING OF MINT

Document Type : Original Article

Authors

1 Lecturer of Agric. Eng. Dep., Fac. of Agric., Suez Canal Univ., 41522 Ismailia, Egypt.

2 Researcher at the Ag. Eng. Res. Inst (AEnRI), Giza, Egypt

Abstract

Mint plant was dried using greenhouse solar dryer. Two of the forced convection operating modes (continuous and intervals) were used and compared with the open sun drying method. The drying kinetics of mint (Mentha spicata L.) in terms of moisture content, moisture ratio, drying time and drying rate was investigated. The continuous forced convection mode gives the highest drying rate for mint than the interval mode and open sun drying. The drying data of solar and open sun drying of mint were fitted to ten thin layer drying models and the Modified Henderson and Pabis model satisfactorily described the drying behavior of mint with highest R2 (0.99) and lowest P and RMSE values than other models. The results of the study are very useful for commercial scale drying of mint to optimize the drying process and to achieve a superior quality dried product.

Main Subjects


Akpinar, E. K. (2010): Drying of mint leaves in a solar dryer and under open sun: Modelling performance analyses. Energy Conversion and Management, 51, 2407-2418.‏
AOAC (1990): Official methods of analysis of the association of official analytical chemists, Arlington, Virginia.
Baydar, H. and Erbas, S. (2009): Effects of harvest time and drying on essential oil properties in Lavandin (Lavandula intermedia emeric ex losiel.). Acta Horticulturae, 826: 377-382.
Corrêa, P.C.; de Oliveira, G.H.H.; Baptestini, F.M., Diniz, M.D.M.S. and da Paixão, A.A. (2012): Tomato infrared drying: Modeling and some coefficients of the dehydration process. Chilean Journal of Agricultural Research 72:262.
Doymaz, I. (2006): Thin-layer drying behaviour of mint leaves. Journal of Food Engineering, 74(3), 370-375.‏
El-Beltagy, A.; Gamea, G. R. and Essa, A. A. (2007): Solar drying characteristics of strawberry. Journal of food engineering, 78(2), 456-464.‏
El-Sebaii, A. A.; Aboul-Enein, S.; Ramadan, M. R. I. and El-Gohary, H. G. (2002): Experimental investigation of an indirect type natural convection solar dryer. Energy conversion and management, 43(16), 2251-2266.‏
Erbay, Z.  and Icier, F. (2010): A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results. Critical Reviews in Food Science and Nutrition 50(5):441-464.
Gürlek, G.; Özbalta, N. and Güngör, A. (2009): Solar tunnel drying characteristics and mathematical modelling of tomato. Journal of Thermal Science and Technology, 29, 15-23.
Hacihafizoğlu, O.; Cihan, A. and Kahveci, K. (2008): Mathematical modelling of drying of thin layer rough rice. Food and Bioproducts Processing, 86(C4):268-275.
Henderson, S. M. and Pabis, S. (1961): Grain drying theory. I. Temperature effect on drying coefficient. Journal of Agriculture Engineering Research, 6, 169-174.
Kadam, D. M. and Samuel, D. V. K. (2006): Convective flat-plate solar heat collector for cauliflower drying. Biosystems Engineering, 93(2), 189-198.‏
Kadam, D. M.; Goyal, R. K.; Singh, K. K. and Gupta, M. K. (2011): Thin layer convective drying of mint leaves. Journal of Medicinal Plants Research, 5(2), 164-170.‏
Kishk, S. S.; ElGamal, R. A.and ElMasry, G. M. (2019): Effectiveness of recyclable aluminum cans in fabricating an efficient solar collector for drying agricultural products. Renewable Energy, 133, 307-316.‏
Kocabiyik, H.; Yilmaz, N.; Tuncel, N. B.; Sumer, S. K. and Burak Buyukcan, M. (2014): The effects of middle infrared radiation intensity on the quality of dried tomato products. International journal of food science & technology, 49(3), 703-710.‏
Kumar, A.; Moses, S.C. and Kalay, K.  (2015): A survey on the design, Fabrication and Utilization of Different Types of Foods and Vegetables Dryer. IOSR. Journal of Agriculture and Veterinary Science (IOSR-JAVS) ISSN: 2319-2380, p-ISSN: 2319-2372. 8(8): 59-68.
Mwithiga, G. and Olwal, J. O. (2005): The drying kinetics of kale (Brassica oleracea) in a convective hot air dryer. Journal of Food engineering, 71(4), 373-378.‏
Özbek, B. and Dadali, G. (2007): Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. Journal of Food Engineering, 83(4), 541-549.‏
Rabha, D. K.; Muthukumar, P. and Somayaji, C. (2017): Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger. Renewable Energy, 105, 764-773.‏
Sallam, Y. I.; Aly, M. H.; Nassar, A. F. and Mohamed, E. A. (2015): Solar drying of whole mint plant under natural and forced convection. Journal of advanced research, 6(2), 171-178.‏
Santos, B.; Queiroz, M. and Borges, T. (2005): A solar collector design procedure for crop drying. Brazilian Journal of Chemical Engineering 22:277-284.
Sekyere, C. K. K.; Forson, F. K. and Adam, F. W. (2016): Experimental investigation of the drying characteristics of a mixed mode natural convection solar crop dryer with back up heater. Renewable Energy, 92, 532-542.‏
Sharaf-Eldeen, Y. I.; Blaisdell, J. L. and Hamdy, M. Y. (1980): A model for ear corn drying. Transactions of the ASAE, 23, 1261–1271.
Soysal, Y. (2005): Mathematical modeling and evaluation of microwave drying kinetics of mint (Mentha spicata L.). Journal of Applied Sciences, 5(7), 1266-1274.‏
Sreekumar A., Manikantan P. and Vijayakumar K. (2008): Performance of indirect solar cabinet dryer. Energy Conversion and Management 49:1388-1395.
Tarhan, S.; Telci, İ.; Tuncay, M. T. and Polatci, H. (2010): Product quality and energy consumption when drying peppermint by rotary drum dryer. Industrial Crops and Products, 32(3), 420-427.‏
Verma,  L.  R.; Bucklin, R. A.; Endan, J. B. and Wratten, F. T. (1985): Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28(1), 296-0301.‏
Wang, C. Y. and Singh, R. P. (1978): A single layer drying equation for rough rice. ASAE Paper No: 78-3001, ASAE, St. Joseph, MI.
Yaldiz, O. and Ertekin, C. (2001): Thin layer solar drying some different vegetables. Drying Technology 19:583-597.