تصميم برمجيات لمحاكاة وادارة انظمة ضخ مياه الرى تدار بالطاقة الشمسية

نوع المستند : Original Article

المؤلفون

1 طالبة دكتوراه بقسم الهندسة الزراعية - كلية الزراعة - جامعة عين شمس - القليوبية - مصر.

2 استاذ متفرغ بقسم الهندسة الزراعية - كلية الزراعة - جامعة عين شمس - القليوبية - مصر.

3 استاذ متفرغ بقسم الهندسة الزراعية - كلية الزراعة - جامعة عين شمس - القليوبية - مصر وعميد كلية الزراعات الصحراوية - جامعة الملك سلمان - رأس سدر - مصر.

4 استاذ مساعد بمركز البحوث النووية - هيئة الطاقة الذرية - الشرقية - مصر.

5 مدرس بقسم الهندسة الزراعية - كلية الزراعة - جامعة عين شمس - القليوبية - مصر.

المستخلص

على الرغم من الاستخدام المتزايد لأنظمة الضخ بالطاقة الشمسية في الزراعة، وخاصة في المناطق الجافة ذات الإدارة المائية الحرجة مثل مصر، ولا يزال هناك نقص في أدوات برمجية سهلة الاستخدام مصممة للظروف المحلية للمساعدة في المحاكاة والتخطيط والإدارة. ولحل هذه المشكلة، نم تطوير أداة برمجية قائمة على المحاكاة هو نظام الضخ بالطاقة الشمسية (SPPS) لأنظمة الري المعتمدة على الطاقة الشمسية في الزراعة. وتساهم هذه الأداة في تلبية احتياجات الطاقة اللازمة للزراعة بكفاءة عالية مع تقليل انبعاثات الغازات الدفيئة، وتعزيز الممارسات الزراعية المستدامة. وتوفر واجهة بسيطة يقوم المستخدمون بإدخال تفاصيل النظام فيها، ويصممونه، ويحاكون أداءه تحت ظروف مناخية واستخدامية متنوعة. ويجمع البرنامج بين الجوانب الفنية والبيئية والإدارية لدعم صانعي القرار في تخطيط وإدارة المياه بكفاءة. ويعتمد على نماذج محاكاة للطاقة الشمسية، والاحتياجات المائية، وأداء المضخات لمحاكاة الظروف الواقعية وتحديد التصميمات المثلى للنظام وخطة التشغيل والادارة.

وتم التحقق من نتائج محاكاة نظام (SPPS) بمقارنتها ببيانات تجريبية مُجمعة من مزرعة مركز البحوث النووية التجريبية في إنشاص، مصر، بناءً على دراسة حالة لمحصول الطماطم المنزرع داخل الصوب الزراعية تحت نظام الري بالتنقيط. وأظهرت النتائج تطابقًا قويًا بنسبة 76% بين أداء النظام المحاكي والنظام الفعلي.

ويُبرز هذا البحث إمكانية دمج الطاقة المتجددة في أنظمة الري لتعزيز الاستدامة، وخاصة في المناطق التي تعاني من ندرة المياه أو عدم استقرار الكهرباء. ويؤكد أن التصميم الفعال للنظام، ومحاذاة الألواح الشمسية بدقة، والمراقبة في الوقت الفعلي عوامل حاسمة لتعظيم استخدام الطاقة وأداء نظام الري. بشكل عام، وتؤكد الدراسة أن الري باستخدام الطاقة الشمسية يمكن أن يساهم بشكل كبير في الإدارة المستدامة للمياه والطاقة في المجال الزراعي.

الكلمات الرئيسية

الموضوعات الرئيسية


Abd Allah, W.E. and Tawfik, M.A., 2019. Design and Operating Assessment of Solar PV Underground Water Pumping System in Upper Egypt. Misr Journal of Agricultural Engineering, 36(2), pp.565-586.
Ahmed, N. M., Hassan, A. M., Kassem, M. A., Hegazi, A. M., & Elsaadawi, Y. F. (2023). Reliability and performance evaluation of a solar PV-powered underground water pumping system. Scientific Reports, 13(1), 14174.‏
Al-Shawabkeh, M. ; M. Al-Hayek and I. Al-Ameen, Ammar Akeel  and Qazem Jaber5 (2017). , Advanced Simulation of Photovoltaic System Using Matlab/Simulink. PhD. Thesis, Institute of Electrical and Electronics Engineers (IEEE).
Bora, B., Prasad, B., Sastry, O. S., Kumar, A., & Bangar, M. (2017). Optimum sizing and performance modeling of Solar Photovoltaic (SPV) water pumps for different climatic conditions. Solar Energy, 155, 1326-1338.‏
Chikaire, J.; F. N. Nnadi; N.; R.N. Nwakwasi; N.O. Anyoha; O. O. Ala, and P. A. Onoh (2010). Solar energy applications for agriculture. Journal of Agricultural and Veterinary Sciences, 2: 58-62.
Chikuni, E. (2012). Program-assisted sizing of a photovoltaic-powered water pumping system.  Journal of Energy in Southern Africa, 23(1): 32-38.
Fragueyro, A. L. (2024). Mobile solar energy system for intensive agriculture irrigation.[Master's thesis, University of San Andres, School of Business]. San Andres Digital Repository. Http://hdl.handle.net/10908/23806
Farag, H., Radwan, H. and El, H., 2008. The Performance of Photovoltaic Solar Pumping System Suitable for Remote Regions. Tarım Makinaları Bilimi Dergisi, 4(2), pp.143-149.
Gielen, D.; F. Boshell; D. Saygin; M.D. Bazilian; N. Wagner and R. Gorini (2019). Energy Strategy Reviews, 24: 38-50.
Cristaldi, L., Faifer, M., Rossi, M., & Toscani, S. (2012). MPPT definition and validation: a new model-based approach. In 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings (pp. 594-599). IEEE.‏
Gutierrez, J., Merino, G., Lara, D., & Salazar, L. (2021). Hydraulic assessment of a photovoltaic system driving a conventional AC surface electric pump. Sustainable Energy Technologies and Assessments, 45, 101060.‏
Ibrahim, S.; H. El-Ghetanyan and G. Shabak (2018). Mathematical modeling and performance evaluation for a solar water pumping system in Egypt. Journal of Al-Azhar University Engineering Sector, 13(48): 946-957.‏
Kaunkid, S. and A. Aurasopon (2023). Efficient solar-powered IOT drip irrigation for tomato yield and quality: An evaluation of the effects of irrigation and fertilizer frequency. CABI Digital Library.
Ksentini, A., Azzag, E., & Bensalem, A. (2019). Sizing and optimisation of a photovoltaic pumping system. International Journal of Energy Technology and Policy, 15(1), 71-85.‏
Kumar, K., Likhitha, K., Kruthika, S. H., Shravani, V., & Muthu, S. (2023). Design and Development of a Low-Cost Portable Solar Water Pumping System Based on Mirror Reflection. In 2023 7th International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS) (pp. 1-6). IEEE.‏
Louazene, M. L., Garcia, M. A., & Korichi, D. (2017). Efficiency optimization of a photovoltaic water pumping system for irrigation in Ouargla, Algeria. In AIP Conference Proceedings (Vol. 1814, No. 1, p. 020039). AIP Publishing LLC.‏
Marion, B. (2021). Evaluation of clear-sky and satellite-derived irradiance data for determining the degradation of photovoltaic system performance. Solar Energy, 223, 376-383.‏
Munir, A., Ullah, A., Ghani, M. U., Iqbal, M., & Ahmad, M. (2012). Performance evaluation and simulation of a photovoltaic powered water pumping system. Pakistan Journal of Lifeand Social Science10, 166-71.‏
Owusu, P. A. and S. Asumadu-Sarkodie (2016). A review of renewable energy source, sustainability issues and climate change mitigation. Cogent Engineering. 3(1):p.1167990.
Quimbita, W.; E. Toapaxi and J. Llanos (2022). Smart irrigation system considering optimal energy management based on model predictive control (MPC). Applied Sciences, 12(9): p.4235.
White, F. M. (2011). Fluid Mechanics (7th ed.). New York: McGraw-Hill Education. 826 pages
Salilih, E. M., Birhane, Y. T., & Arshi, S. H. (2020). Performance analysis of DC type variable speed solar pumping system under various pumping heads. Solar Energy, 208, 1039-1047.‏
Sasikala, P., & Madhusudhan, R. (2024). Enhancing friction stir welding efficiency through rotational speed adjustment: a microstructural and mechanical analysis of Al-Cu alloy. Engineering Research Express6(1), 015053.‏
Serbouh, Y., Benikhelef, T., Benazzouz, D., Ait Chikh, M. A., Touil, S., Richa, A., and Mahmoudi, H. (2022). Performance optimization and reliability of solar pumping system designed for smart agriculture irrigation. Desalination and Water Treatment, 255, 4-12.‏
Yağan, Y. E.; K. Vardar and M. A. Ebeoğlu (2018). Modeling and simulation of PV systems. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 13(2):1-11.
Yong, Q. I. U., Meng, D. I., Ming-Gao, T. A. N., Xiao- Chen, T. A. N. G., & Hou- Lin, L. I. U. (2022). Dynamic Operating Characteristics Test of the Solar Pump System. China Rural Water & Hydropower, (4).‏
Zegait, R., Bentraia, M. R., Bensaha, H., & Azlaoui, M. (2022). Comparative Study of a Pumping System Using Conventional and Photovoltaic Power in the Algerian Sahara (Application to Pastoral Wells). International Journal of Engineering Research in Africa, 60, 63-74.‏
Zimmermann, A.E., King, E.E. and Bose, D.D., 2024. Effectiveness and Utility of Flowcharts on Learning in a Classroom Setting: A Mixed-Methods Study. American Journal of Pharmaceutical Education, 88(1), p.100591.