تطبيق الأشعة فوق البنفسجية المبيدة للجراثيم في تطهير روث الدجاج لتعزيز الاستدامة الزراعية

نوع المستند : Original Article

المؤلفون

1 أستاذ مساعد – قسم الهندسة الزراعية – كلية الزراعة – جامعة الزقازيق – الزقازيق – مصر.

2 أستاذ متفرغ – قسم الهندسة الزراعية والنظم الحيوية – كلية الزراعة – جامعة الإسكندرية – الإسكندرية – مصر.

3 أستاذ مساعد – قسم الهندسة الزراعية والنظم الحيوية – كلية الزراعة – جامعة الإسكندرية – الإسكندرية – مصر.

المستخلص

يعتبر روث الدجاج موردًا قيمًا عندما تتم إدارته بشكل صحيح، في حين أن سوء إدارة الروث غالبًا ما يؤدي إلى تحديات خطيرة ومخاوف تتعلق بالصحة العامة. تعد الإدارة الصديقة للبيئة لروث الدجاج أمرًا بالغ الأهمية لتحقيق الاستدامة الزراعية. إحدى استراتيجيات تعزيز الإدارة المستدامة لروث الدجاج هي تطبيق تقنية الأشعة فوق البنفسجية.
ومن ثم تم إجراء البحث الحالي بهدف تطبيق وتقييم أداء نظام التطهير بالأشعة فوق البنفسجية المبيد للجراثيم (UV-C) كتقنية مستدامة لتطهير روث الدجاج. تمت دراسة أداء نظام التطهير بالأشعة فوق البنفسجية كدالة للتغيرات في كثافة الأشعة فوق البنفسجية (980، 1470، 1960 ميكرووات/سم2) وزمن التعرض للأشعة فوق البنفسجية (5، 10، 15، 30، 60، 90 دقيقة). وقد تم التقييم أخذًا في الاعتبار كلًا من العد الميكروبي، كفاءة التطهير، الطاقة اللازمة لعملية التطهير، تكاليف التطهير.
كشفت النتائج التجريبية أن الحدود المثلى لتقليل العدد الكلي للبكتيريا، والقولونيات، والإشريكية القولونية (1.5، 2.8، 1.8 log CFU g−1)، وكفاءة التطهير (96.58، 99.84، 98.40 ٪)، والطاقة اللازمة لعملية التطهير (0.33، 2.93، و0.16 كيلووات.ساعة/كجم)، وتكاليف التطهير (0.024، 0.218، و 0.012 دولار أمريكي/كجم) تم تحقيقها عند كثافة الأشعة فوق البنفسجية البالغة 1960 ميكرووات/سم2 وأزمنة التعرض 10 و90 و5 دقائق على التوالي. وفقًا لهذه الدراسة، يوفر التطهير بالأشعة فوق البنفسجية بديلاً مستدامًا بيئيًا للمركبات الكيميائية للتحكم في التلوث الميكروبيولوجي في روث الدجاج.

الكلمات الرئيسية

الموضوعات الرئيسية


AOAC, Association of Official Analytical Chemists (1990). Official Methods of Analysis (15th Ed.). Washington.
AOAC, Association of Official Analytical Chemists (2005). Official Methods of Analysis (18th Ed.). AOAC INTERNATIONAL. Gaithersburg. MD.
APHA, American Public Health Association (1992). Standard Methods for the Examination of Dairy Products. Washington. DC.
APHA, American Public Health Association (2005). Standard Methods for Examination of Water and Waste Water. 21st Ed. Washington. DC.
Bailey, M. et al. (2022) ‘Effects of common litter management practices on the prevalence of Campylobacter jejuni in broilers’, Animals, 12(7), 858. Doi:10.3390/ani12070858.
Beck, S. et al. (2016) ‘Comparison of UV-induced inactivation and RNA damage in MS2 phage across the germicidal UV spectrum’, Applied and Environmental Microbiology, 82(5),1468-1474. Doi:10.1128/AEM.02773-15.
Bhattacharjee, C., Saxena, V. K. and Dutta, S. (2019) ‘Novel thermal and non-thermal processing of watermelon juice’, Trends in Food Science and Technology, 93, 234-243. Doi:08101xy62-1104-y-https-doi-org.mplbci.ekb.eg/10.1016/j.tifs.2019.09.015.
Björn, L. O. (2015) ‘Ultraviolet-A, B, and C’, UV4Plants Bulletin, 1,17-18. Doi:10.19232/uv4pb.2015.1.12.
Bolan, N. et al. (2010) ‘Uses and management of poultry litter’, World's Poultry Science Journal, 66 (4), 673-698. Doi:10.1017/S0043933910000656.
Bolton, J. R. (2010) Ultraviolet applications handbook. Edmonton AB: ICC Lifelong Learn Inc.
Chen, Z. and Jiang, X. (2014) ‘Microbiological safety of chicken litter or chicken litter-based organic fertilizers: a review’, Agriculture, 4(1), 1-29. Doi:10.3390/agriculture4010001.
Dai, T. et al. (2012) ‘Ultraviolet C irradiation: an alternative antimicrobial approach to localized infections’, Expert Review of Anti-infective Therapy, 10(2), 185-195. Doi:10.1586/eri.11.166.
Del Valle, J. et al. (2020) ‘UV radiation increases phenolic compound protection but decreases reproduction in Silene littorea’, PloS one, 15(6), e0231611. Doi:10.1371%2Fjournal.pone.0231611.
Delorme, M. et al. (2020) ‘Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods’, Trends in Food Science and Technology, 102, 146-154. Doi:10.1016/j.tifs.2020.06.001.
Duan, Y. et al. (2019) ‘Response of bamboo biochar amendment on volatile fatty acids accumulation reduction and humification during chicken manure composting’, Bioresource Technology, 291, 121845. Doi:10.1016/j.biortech.2019.121845.
Dunn, L. et al. (2022) ‘The prevalence and concentration of Salmonella enterica in poultry litter in the southern United States’, Plos one, 17(5), e0268231. Doi:10.1371/journal.pone.0268231.
Ebrahim, R. et al. (2022) ‘Effect of ultraviolet radiation on molecular structure and photochemical compounds of Salvia hispanica medical seeds’, AIMS Biophysics, 9(2), 172-181. Doi:http://dx.doi.org/10.3934/biophy.2022015.
Esua, O. et al. (2020) ‘A review on individual and combination technologies of UV-C radiation and ultrasound in postharvest handling of fruits and vegetables’, Processes, 8(11), 1433. Doi:10.3390/pr8111433.
George, F. et al. (2018) ‘Development of Organic fish feeds: Case study of poultry droppings and pig feces as replacement for soybean meal in practical diets for Nile tilapia, Oreochromis niloticus (L.)’, In Ecological and Organic Agriculture Strategies for Viable Continental and National Development in the Context of the African Union's Agenda 2063. Scientific Track Proceedings of the 4th African Organic Conference; November 5-8; Saly Portudal, Senegal, 121-128.
Gržinić, G. et al. (2023) ‘Intensive poultry farming: A review of the impact on the environment and human health’, Science of the Total Environment, 858, 160014. Doi:10.1016/j.scitotenv.2022.160014.
Guan, T. Y. and Holley, R. A. (2003) ‘pathogen survival in swine manure environments and transmission of human enteric illness—a review’, Journal of Environmental Quality, 32(2), 383-392. Doi:10.2134/jeq2003.3830.
He, S. et al. (2021) ‘Photodegradation of dissolved organic matter of chicken manure: Property changes and effects on Zn2+/Cu2+ binding property’, Chemosphere, 276, 130054. Doi:10.1016/j.chemosphere.2021.130054.
Hidalgo, D., Corona, F. and Martín-Marroquín, J. M. (2022) ‘Manure biostabilization by effective microorganisms as a way to improve its agronomic value’, Biomass Conversion and Biorefinery, 12(10), 4649-4664. Doi:10.1007/s13399-022-02428-x.
Hijnen, W. A., Beerendonk, E. F. and Medema, G. J. (2006) ‘Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo) cysts in water: A review’, Water Research, 40(1), 3-22. Doi:10.1016/j.watres.2005.10.030.
Hu, Y., Cheng, H. and Tao, S. (2017) ‘Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation’, Environment International, 107, 111-130. Doi:10.1016/j.envint.2017.07.003.
Hunter, E. et al. (2023) ‘A pilot study to investigate the antimicrobial activity of pulsed UVA and UVC’, Aerobiology, 1(2), 82-97. Doi:10.3390/aerobiology1020007.
Koca, N., Urgu, M. and Saatli, T. E. (2018). ‘Ultraviolet light applications in dairy processing’, Technological approaches for novel applications in dairy processing, IntechOpen. Doi:10.5772/intechopen.74291.
Koutchma, T., Forney, L.J. and Moraru, C. I. (2009) Ultraviolet light in food technology: principles and applications, Boca Raton, Florida: CRC Press, 296. Doi:10.1201/9781315112862.
Kowalski, W. (2009) Ultraviolet germicidal irradiation handbook: UVGI for air and surface disinfection, New York, NY: Springer science & business media. Doi:10.1007/978-3-642-01999-9.
Kumar, A. et al. (2021) ‘Impact of UV-C irradiation on solubility of Osborne protein fractions in wheat flour’, Food Hydrocolloids, 110, 105845. Doi:10.1016/j.foodhyd.2020.105845.
Li, Y. et al. (2024) ‘Inactivation of pathogenic microorganisms in water by electron beam excitation multi-wavelength ultraviolet irradiation: Efficiency, influence factors and mechanism’, Journal of Environmental Management, 350, 119597. Doi:10.1016/j.jenvman.2023.119597.
Manyi-Loh, C. et al. (2016) ‘An overview of the control of bacterial pathogens in cattle manure’, International Journal of Environmental Research and Public Health, 13(9), 843. Doi:10.3390/ijerph13090843.
McKeen, L. (2012) ‘Introduction to food irradiation and medical sterilization’, The Effect of sterilization on plastics and elastomers, 1-40. Doi:10.1016%2FB978-1-4557-2598-4.00001-0.
Muhammad, J. et al. (2020) ‘Application of poultry manure in agriculture fields leads to food plant contamination with potentially toxic elements and causes health risk’, Environmental Technology and Innovation, 19, 100909. Doi:10.1016/j.eti.2020.100909.
Nerandzic, M. M., Fisher, C. W. and Donskey, C. J. (2014) ‘Sorting through the wealth of options: comparative evaluation of two ultraviolet disinfection systems’, PLoS one, 9(9), e107444. Doi:10.1371/journal.pone.0107444.
Nguyen, X. et al. (2022) ‘Effect of ultraviolet radiation on reducing Airborne Escherichia coli carried by poultry litter particles’, Animals, 12(22), 3170. Doi:10.3390/ani12223170.
Nicklin, J. et al. (1999) Instant notes in microbiology. BIOS Sciencetific Publishers. 342.
Niño-Gomez, J. et al. (2021) ‘Ultraviolet radiation to control bacteria in oil well injection water’, CT&F-Ciencia, Tecnología y Futuro, 11(1), 5-9. Doi:10.29047/01225383.191
Obasa, S. O., Alegbeleye, W. O. and Amole, J. B. (2009) ‘Dried poultry manure meal as a substitute for soybean meal in the diets of African Catfish (Clarias gariepinus) (Burchell 1822) advanced fry’, Turkish Journal of Fisheries and Aquatic Sciences, 9(1), 121-124.
Okrend, A. J., Rose, B. E. and Lattuada, C. P. (1990) ‘Use of 5-bromo-4-chloro3-indoxyle-B-D-glucuronide in Mac Conkey Sorbitol Agar to aid in the isolation of Escherichia coli O157: H7 from ground beef’, Journal of Food Protection, 53, 941–943.
Oni, R. et al. (2013) ‘The effect of UV radiation on survival of Salmonella enterica in dried manure dust’, In Proceedings of the International Association for Food Protection Annual Meeting, Charlotte, NC, USA, 30.
Paul, A. et al. (2012) ‘UV irradiation of natural organic matter (NOM): impact on organic carbon and bacteria’, Aquatic Sciences, 74, 443-454. Doi:10.1007/s00027-011-0239-y.
Rahman, M. et al. (2022) ‘Current state of poultry waste management practices in Bangladesh, environmental concerns, and future recommendations’, Journal of Advanced Veterinary Research, 9(3), 490-500. Doi:10.5455%2Fjavar.2022.i618.
Ramos, T. et al. (2021) ‘Survival and persistence of foodborne pathogens in manure-amended soils and prevalence on fresh produce in certified organic farms: a multi-regional baseline analysis’, Frontiers in Sustainable Food Systems, 5, 674767. Doi:10.3389/fsufs.2021.674767.
Rasool, A. et al. (2023) ‘Effects of poultry manure on the growth, physiology, yield, and yield-related traits of maize varieties’, ACS Omega, 8 (29), 25766–25779. Doi:10.1021%2Facsomega.3c00880.
Ravindran, B. et al. (2017) ‘Assessment of nutrient quality, heavy metals and phytotoxic properties of chicken manure on selected commercial vegetable crops’, Heliyon, 3(12), 00493. Doi:10.1016/j.heliyon.2017.e00493.
Semenov, M. et al. (2021) ‘Does fresh farmyard manure introduce surviving microbes into soil or activate soil-borne microbiota?’ Journal of Environmental Management, 294, 113018. Doi:10.1016/j.jenvman.2021.113018.
Shahabi-Ghahfarrokhi, I., Goudarzi, V. and Babaei-Ghazvini, A. (2019) ‘Production of starch based biopolymer by green photochemical reaction at different UV region as a food packaging material: Physicochemical characterization’, International Journal of Biological Macromolecules, 122, 201-209. Doi:10.1016/j.ijbiomac.2018.10.154.
Sharrer, M. et al. (2005) ‘Inactivation of bacteria using ultraviolet irradiation in a recirculating salmonid culture system’, Aquacultural Engineering, 33(2), 135-149. Doi:10.1016/j.aquaeng.2004.12.001.
Shinde, S., Lee, L. H. and Chu, T. (2021) ‘Inhibition of biofilm formation by the synergistic action of EGCG-S and antibiotics’, Antibiotics, 10(2), 102.
Singh, P. et al. (2018) ‘Poultry waste management’, International Journal of Current Microbiology and Applied Sciences, 7(8), 701-712. Doi:10.20546/ijcmas.2018.708.077.
Spiehs, M. J. and Goyal, S. M. (2007) ‘Best management practices for pathogen control in manure management Systems’, University of Minnesota Extension: St. Paul, MN, USA, M1211.
Tawfik, A. et al. (2023) ‘Bioenergy production from chicken manure: a review’, Environmental Chemistry Letters, 21, 2707-2727. Doi:10.1007/s10311-023-01618-x.
Tchonkouang, R. et al. (2023) ‘UV-C light: A promising preservation technology for vegetable-based nonsolid food products’, Foods, 12(17), 3227. Doi:10.3390/foods12173227.
Usman, S. et al. (2019) ‘Utilization of poultry waste as feed and supplementary feed for fish growth’, Journal of Applied Sciences and Environmental Management, 23(4), 627-631. Doi:10.4314/jasem.v23i4.8
Wang, J. et al. (2023) ‘A systematic review and meta-analysis of the sources of Salmonella in poultry production (pre-harvest) and their relative contributions to the microbial risk of poultry meat’, Poultry Science, 102(5), 102566. Doi:10.1016/j.psj.2023.102566.
Wang, L. et al. (2013) ‘Analysis of ultraviolet radiation in Central China from observation and estimation’, Energy, 59, 764-774. Doi:10.1016/j.energy.2013.07.017.
Xu, P. et al. (2005) ‘Impact of environmental factors on efficacy of upper-room air ultraviolet germicidal irradiation for inactivating airborne mycobacteria’, Environmental Science and Technology, 39(24), 9656-9664. Doi:10.1021/es0504892
Yang, J. et al. (2019) ‘Effectiveness of an ultraviolet-C disinfection system for reduction of healthcare-associated pathogens’, Journal of Microbiology, Immunology and Infection, 52(3), 487-493. Doi:10.1016/j.jmii.2017.08.017.
Yemmireddy, V., Adhikari, A. and Moreira, J. (2022) ‘Effect of ultraviolet light treatment on microbiological safety and quality of fresh produce: An overview’, Frontiers in Nutrition, 9, 871243. Doi:10.3389/fnut.2022.871243.
Zayadi, R. A. (2021) ‘Current outlook of livestock industry in Malaysia and ways towards sustainability’, Journal of Sustainable Natural Resources, 2(2), 1-11. Doi:10.30880/jsunr.2021.12.02.001.