تأثير البولي انيلين النانوي والرماد المتطاير على الخواص الهندسية للطوب اللبن بمنطقة الساحل الشمالي في مصر

نوع المستند : Original Article

المؤلفون

1 استاذ مساعد، قسم الهندسة الزراعية والنظم الحيوية - كلية الزراعة - جامعة الإسكندرية - مصر.

2 استاذ متفرغ، قسم الهندسة الزراعية والنظم الحيوية - كلية الزراعة - جامعة الإسكندرية - مصر.

3 استاذ مساعد، قسم الهندسة الزراعية، كلية الزراعة - جامعة الزقازيق – مصر.

4 دكتوراه، قسم الهندسة الزراعية والنظم الحيوية - كلية الزراعة - جامعة الإسكندرية - مصر.

5 مدرس، قسم الهندسة الزراعية والنظم الحيوية - كلية الزراعة - جامعة الإسكندرية - مصر.

المستخلص

تصف هذه الورقة بحثًا تجريبيًا حول تحسين خواص الطوب اللبن المصنع من التربة باستخدام الرماد المتطاير (FA)  و البولي انيليتن النانوي (PA) عن طريق تفاعل البلمرة باستخدام محلول قلوي (AM) يتكون من خلط محلول هيدروكسيد الصوديوم ومحلول سيليكات الصوديوم. حيث تم تثبيت مولارية محلول هيدروكسيد الصوديوم عند 14 مول كما تم تثبيت نسبة محلول سيليكات الصوديوم إلى محلول هيدروكسيد الصوديوم عند 1.5. يتناول البحث دراسة الخواص الهندسية لأربعة خلطات اساسية للطوب الجيوليمري GSAC وهي :  الخلطة الاولي (خليط التحكم  (T1يتكون من التربة و ماء الخلط
(NS &   (Water؛ الخلطة الثانية T2  تتكون من التربة  و المحلول القلوي
) NA & (AM؛ الخلطة الثالثة  T3 تتكون من التربة و الرماد المتطاير
و المحلول القلوي   (NS, FA&AM) و الخلطة الرابعة T4 وتتكون من التربة و الرماد المتطاير و البولي انيلين و المحلول القاوي ( NS, FA, PA,& AM) . تم دراسة كل من مقاومة الضغط ومعدل تشرب المياه والتغير في الكثافة بالإضافة الي التغير في التركيب البنائي باستخدام الميكروسكوب الالكتروني. وقد لوحظ وجود تأثيرات معنوية في جميع الصفات المدروسة. وقد اظهرت النتائج ما يلي : ان الخليط المكون من  ( NS, FA, PA,& AM) اعطي اعلي قيمة لكل من مقاومة الضغط والكثافة ( 7.8 نيوتن/مم2 و2.28 جم/سم3، على التوالي). كما اظهر نفس الخليط ادني معدل امتصاص للماء حيث بلغ معدل الامتصاص 2.02% و3.11% بعد 2 و24 ساعة من النقع في الماء، على التوالي. كما أظهرت نتائج تحليل البنية المجهرية تحت الميكروسكوب الالكتروني ان الخلطة الرابعة هي أفضل تركيب بنائي مع أقل مسامية.

الكلمات الرئيسية

الموضوعات الرئيسية


Ali, R., El-Boubbou, K., Boudjelal, M., (2021). An easy, fast and inexpensive method of preparing a biological specimen for scanning electron microscopy (SEM). MethodsX 8, 101521. https://doi.org/10.1016%2Fj.mex.2021.101521
Bahobail, M.A., (2012). The mud additives and their effect on thermal conductivity of adobe bricks. J. Eng. Sci. 40 (1), 21–34. https://dx.doi.org/10.21608/jesaun.2012.112711
Beygisangchin, M., Abdul Rashid, S., Shafie, S., Sadrolhosseini, A.R., Lim, H.N., (2021). Preparations, properties, and applications of polyaniline and polyaniline thin films—A review. Polymers 13 (12), 2003. https://doi.org/10.3390%2Fpolym13122003
Bilgin, N., Yeprem, H.A., Arslan, S.Ö.N.M.E.Z., Bilgin, A., Günay, E., Marşoglu, M.,( 2012). Use of waste marble powder in brick industry. Constr. Build Mater. 29, 449-457. https://doi.org/10.1016/j.conbuildmat.2011.10.011
Cai, Q., Li, P., Luo, J., Feng, J., Wu, K., Xu, L.,( 2023). Production of green autoclaved bricks from waste quarry sludge: Mechanical and microstructural aspects. Constr. Build Mater. 401, 132874. https://doi.org/10.1016/j.conbuildmat.2023.132874
Cao, V.D., Pilehvar, S., Salas-Bringas, C., Szczotok, A.M., Do, N.B.D., Le, H.T., Carmona, M., Rodriguez, J.F., Kjøniksen, A.L., (2018). Influence of microcapsule size and shell polarity on the time-dependent viscosity of geopolymer paste. Ind. Eng. Chem. Res. 57 (29), 9457-9464. https://doi.org/10.1021/acs.iecr.8b01961
Chindaprasirt, P., Pimraksa, K., (2008). A study of fly ash–lime granule unfired brick. Powder Technol. 182 (1), 33-41. https://doi.org/10.1016/j.powtec.2007.05.001
Chindaprasirt, P., Srisuwan, A., Saengthong, C., Lawanwadeekul, S., Phonphuak, N., (2021). Synergistic effect of fly ash and glass cullet additive on properties of fire clay bricks. J. Build. Eng. 44, 102942. https://08101tnnb-1105-y-https-doi-org.mplbci.ekb.eg/10.1016/j.jobe.2021.102942
Chokshi, Y., Sompura, N., Dutta, S.K.,( 2018). Utilization of steel plants waste. Mater. Sci. Eng. 2 (5), 144-147. https://doi.org/10.15406/mseij.2018.02.00048
Dawood, A.O., Mussa, F.I., Al Khazraji, H., Abd Ulsada, H.A., Yasser, M.M., (2021). Investigation of compressive strength of straw reinforced unfired clay bricks for sustainable building construction. Civ. Eng. Environ. 17 (1), 150-163. https://doi.org/10.2478/cee-2021-0016 
Dos Reis, G.S., Cazacliu, B.G., Cothenet, A., Poullain, P., Wilhelm, M., Sampaio, C.H., Lima, E.C., Ambros, W., Torrenti, J.M.,(2020). Fabrication, microstructure, and properties of fired clay bricks using construction and demolition waste sludge as the main additive. J. Clean. Prod. 258, 120733. https://doi.org/10.1016/j.jclepro.2020.120733
Eliche-Quesada, D., Sandalio-Perez, J.A., Martínez-Martínez, S., Perez-Villarejo, L., S_anchez-Soto, P.J., (2018). Investigation of the use of coal fly ash in eco-friendly construction materials: fired clay bricks and silica-calcareous non fired bricks. Ceram. Int. 44 (4), 4400-4412. https://doi.org/10.1016/j.ceramint.2017.12.039
Goel, G., Kalamdhad, A.S., (2017). An investigation on use of paper mill sludge in brick manufacturing. Constr. Build Mater. 148, 334-343. https://doi.org/10.1016/j.conbuildmat.2017.05.087  
Gvozdenović, M.M., Jugović, B.Z., Stevanović, J.S., Grgur, B., Trišović, T.L., Jugović, Z.S., (2011). Electrochemical synthesis and corrosion behavior of polyaniline-benzoate coating on copper. Synth. Met. 161 (13-14), 1313-1318. https://doi.org/10.1016/j.synthmet.2011.04.029
Harikumar, M., Mohamed, F., Mohammed, A., Ashraf, I., Shahansha, M., Anand, A.G., (2022). Clay bricks using building debris. Mater. Today: Proc. 60 (1), 746-752. https://doi.org/10.1016/j.matpr.2022.02.347
Hasan, M.A., Hashem, M.A., Payel, S.,(2022). Stabilization of liming sludge in brick production: a way to reduce pollution in tannery. Constr. Build Mater. 314, 125702. https://doi.org/10.1016/j.conbuildmat.2021.125702
Hashemi, A., Cruickshank, H., Cheshmehzangi, A.,(2015). Environmental impacts and embodied energy of construction methods and materials in low-income tropical housing. Sustainability 7 (6), 7866-7883. https://doi.org/10.3390/su7067866
Ige, O., Danso, H., (2021). Physico-mechanical and thermal gravimetric analysis of adobe masonry units reinforced with plantain pseudo-stem fibres for sustainable construction. Constr. Build Mater. 273, 121686. https://doi.org/10.1016/j.conbuildmat.2020.121686
Kadir, A.A., Mohajerani, A., (2011). Bricks: An excellent building material for recycling wastes - A review. In Proceedings of the IASTED International Conference on Environmental Management and Engineering (EME 2011), Calgary, AB, Canada (July 4-6), 108-115. http://dx.doi.org/10.2316/P.2011.736-029
Khale, D., Chaudhary, R., (2007). Mechanism of geopolymerization and factors influencing its development: a review. J. Mater. Sci. 42, 729-746. https://doi.org/10.1007/s10853-006-0401-4
Khan, M.H.R., Rahman, M.K., Ajm, A., Oki, Y., Adachi, T., (2006). Evaluation of degradation of agricultural soils associated with brick burning in selected soil profiles in the eastern region of Bangladesh. Jpn. J. Trop. Agr. 50 (4), 183–189. https://doi.org/10.11248/jsta1957.50.183
Khitab, A., Riaz, M.S., Jalil, A., Khan, R.B.N., Anwar, W., Khan, R.A., Arshad, M.T., Kirgiz, M.S., Tariq, Z., Tayyab, S., (2021). Manufacturing of clayey bricks by synergistic use of waste brick and ceramic powders as partial replacement of clay. Sustainability 13 (18), 10214. https://doi.org/10.3390/su131810214
Krithika, J., Kumar, G.R., (2020). Influence of fly ash on concrete–A systematic review. Mater. Today: Proc. 33, 906-911. https://doi.org/10.1016/j.matpr.2020.06.425
Kumar, K., Srinivasu, K., 2022. Influence of GGBS and Alkaline Ratio on Compression Strength of Geopolymer Concrete. ECS Trans. 107 (1), 8897-8904. http://dx.doi.org/10.1149/10701.8897ecst 
Lokeshwari, M., Jagadish, K.S., (2016). Eco-friendly use of granite fines waste in building blocks. Procedia Environ. Sci. 35, 618-623. https://doi.org/10.1016/j.proenv.2016.07.049 
Medvey, B., Dobszay, G., (2020). Durability of stabilized earthen constructions: A review. Geotech. Geol. Eng. 38 (3), 2403-2425. https://doi.org/10.1007/s10706-020-01208-6
Meukam, P., Jannot, Y., Noumowe, A., Kofane, T.C., (2004). Thermo physical characteristics of economical building materials. Constr. Build Mater. 18 (6), 437-443. https://doi.org/10.1016/j.conbuildmat.2004.03.010
Mohajerani, A., Burnett, L., Smith, J.V., Kurmus, H., Milas, J., Arulrajah, A., Horpibulsuk, S., Abdul Kadir, A., (2019). Nanoparticles in construction materials and other applications, and implications of nanoparticle use. Materials 12 (19), 3052. https://doi.org/10.3390%2Fma12193052
Muhammud, A.M., Gupta, N.K., (2022). Nanostructured SiO2 material: synthesis advances and applications in rubber reinforcement. RSC Adv. 12 (29), 18524-18546. https://doi.org/10.1039%2Fd2ra02747j
Murugesan, P., Partheeban, P., Manimuthu, S., Jegadeesan, V., Christopher, C.G., (2023). Multi-criteria decision analysis for optimum selection of different construction bricks. J. Build. Eng. 71, 106440. https://doi.org/10.1016/j.jobe.2023.106440
Naganathan, S., Mohamed, A.Y.O., Mustapha, K.N., (2015). Performance of bricks made using fly ash and bottom ash. Constr. Build Mater. 96, 576-580. https://doi.org/10.1016/j.conbuildmat.2015.08.068
Najar, M., Sakhare, V., Karn, A., Chaddha, M., Agnihotri, A., (2021). A study on the impact of material synergy in geopolymer adobe: Emphasis on utilizing overburden laterite of aluminium industry. Open Ceram. 7, 100163. https://doi.org/10.1016/j.oceram.2021.100163
Nim, A., Meshram, K., (2020). Impact of ecofriendly blast furnace slag on production of building blocks. Stavební obzor- Civ. Eng. J. 29 (4), 573-582. https://doi.org/10.14311/CEJ.2020.04.0049
Paul, S., Islam, M.S., Elahi, T.E., 2023. Potential of waste rice husk ash and cement in making compressed stabilized earth blocks: Strength, durability and life cycle assessment. J. Build. Eng. 73, 106727. https://doi.org/10.1016/j.jobe.2023.106727
Pawar, A.S., Garud, D.B., (2014). Engineering properties of clay bricks with use of fly ash. Int. Res. J. Eng. Technol. 3 (9), 75-80. http://dx.doi.org/10.15623/ijret.2014.0321016
Peymanfar, R., Keykavous-Amand, S., Abadi, M.M., Yassi, Y.,(2020). A novel approach toward reducing energy consumption and promoting electromagnetic interference shielding efficiency in the buildings using Brick/polyaniline nanocomposite. Constr. Build Mater. 263, 120042. https://doi.org/10.1016/j.conbuildmat.2020.120042
Raghavendra, S.C., Khasim, S., Revanasiddappa, M., Ambika Prasad, M.V.N., Kulkarni, A.B., (2003). Synthesis, characterization and low frequency ac conduction of polyaniline/fly ash composites. Bull. Mater. Sci. 26 (7), 733-739. https://doi.org/10.1007/BF02706771
Salih, M.M., Osofero, A.I., Imbabi, M.S., (2020). Critical review of recent development in fiber reinforced adobe bricks for sustainable construction. Front. Struct. Civ. Eng. 14 (4), 839-854. https://doi.org/10.1007/s11709-020-0630-7
Sani, R., Nzihou, A., (2017). Production of clay ceramics using agricultural wastes: Study of properties, energy savings and environmental indicators. Appl. Clay Sci. 146, 106-114. https://doi.org/10.1016/j.clay.2017.05.032
Saraswathy, R., James, J., Pandian, P.K., Sriram, G., Sundar, J.K., Kumar, G.S., Kumar, A.S., (2019). Valorization of Crushed Glass as a Potential Replacement for Sand in Cement Stabilized Fly Ash Bricks. Civ. Eng. Environ. 15 (1), 48-57. https://doi.org/10.2478/cee-2019-0008
Shilar, F.A., Ganachari, S.V., Patil, V.B., Almakayeel, N., Khan, T.Y., (2023). Development and optimization of an eco-friendly geopolymer brick production process for sustainable masonry construction. Case Stud. Constr. Mater. 18, e02133. https://doi.org/10.1016/j.cscm.2023.e02133 
Swanepoel, J.C., Strydom, C.A., (2002). Utilisation of fly ash in a geopolymeric material. Appl. Geochem. 17 (8), 1143-1148. https://doi.org/10.1016/S0883-2927(02)00005-7
Teizer, J., Venugopal, M., Teizer, W., Felkl, J., (2012). Nanotechnology and its impact on construction: bridging the gap between researchers and industry professionals. J. Constr. Eng. Manag. 138 (5), 594-604. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000467
Turgut, P., Yesilata, B., (2008). Physico-mechanical and thermal performances of newly developed rubber-added bricks. Energy Build. 40 (5), 679–688. https://doi.org/10.1016/j.enbuild.2007.05.002
Ukwizagira, G., Leopold Mbereyaho, L., (2023). Strength Assessment of Improved Adobe Brick Using Natural Stabilizers. Mediterranean Journal of Basic and Applied Sciences (MJBAS). Volume 7, Issue 1, Pages 14-26,
Wendimu, T.B., Furgasa, B.N., Hajji, B.M., (2021). Suitability and Utilization Study on Waste Plastic Brick as Alternative Construction Material. J. Civ. Constr. Environ. Eng. 6 (1), 9-12. http://dx.doi.org/10.11648/j.jccee.20210601.12  
Wiehle, P., Simon, S., Baier, J., Dennin, L., (2022). Influence of relative humidity on the strength and stiffness of unstabilised earth blocks and earth masonry mortar. Constr. Build Mater. 342, 128026. https://doi.org/10.1016/j.conbuildmat.2022.128026
Zhang, L., (2013). Production of bricks from waste materials–A review. Constr. Build Mater. 47, 643–655. https://doi.org/10.1016/j.conbuildmat.2013.05.043