وسائط ترشيح حيوية جديدة لإزالة المعادن الثقيلة من مياه صرف المزارع السمكية

نوع المستند : Original Article

المؤلفون

1 أستاذ مساعد- قسم الهندسة الزراعية – كلية الزراعة – جامعة القاهرة- الجيزة - مصر.

2 أستاذ - قسم الميكروبيولوجيا الزراعية – كلية الزراعة – جامعة القاهرة- الجيزة - مصر.

3 طالبة ماجستير- قسم الهندسة الزراعية – كلية الزراعة – جامعة القاهرة- الجيزة - مصر.

المستخلص

سيكون من الضروري توفير حوالي 40 مليون طن إضافية من الأسماك بحلول عام 2030 من أجل الحفاظ على نصيب الفرد ثابتًا. تساهم الأسماك الناتجة من المزارع السمكية بحوالي 50٪ من إجمالي إنتاج الأسماك حول العالم. أصبح من الشائع معالجة المياه الناتجة من المزارع السمكية بالطريقة البيولوجية، لأنها من أفضل الطرق مقارنة بالطريقة الفيزيائية والكيميائية. على الرغم من أن الأمونيا (NH3) من أهم الملوثات التي تنتجها المزارع السمكية، إلا أن هناك العديد من المعادن الثقيلة التي لها تأثيرات سلبية على الأسماك والبيئة. في هذه التجربة تم تصميم وحدة معالجة مكونة من مرحلتين، مرحلة المرشح الميكانيكي كمرحلة معالجة أولية ثم المرشح البيولوجي كمرحلة معالجة اساسية. تم استخدام الحصى كوسط للمرشح الميكانيكي واستخدام الكربون المٌنشَطْ (AC) وقش الأرز (RS) كوسائط للمرشح الحيوى. تمت دراسة تأثير الكربون المٌنشَطْ وقش الأرز على إزالة المعادن الثقيلة من الماء. كما تم تحديد تأثير تغيير قيمة الرقم الهيدروجيني (pH) على إزالة الأمونيا. تم قياس تركيز الرصاص (Pb) والحديد (Fe) والنحاس (Cu) والنيكل (Ni) والبورون (B) والكادميوم (Cd) والزرنيخ (As) والقصدير (Sn) والزنك (Zn) للمياه العادمة والمياه التي تم معالجتها. أظهرت النتائج أن أفضل كفاءة للكربون المٌنشَطْ وقش الأرز كانت لإزالة النحاس (Cu) بنسبة 65.80 و84.68٪ على التوالي، وأقل كفاءة كانت إزالة الرصاص (Pb) بنسبة 31.50 و43.20٪ على التوالي. أفضل رقم هيدروجيني للكربون المٌنشَطْ وقش الأرز كان 8 بكفاءة إزالة للأمونيا 85.00 و68.00٪ على التوالي.

الكلمات الرئيسية

الموضوعات الرئيسية


Abdelbary, K. M. (2016). Bioremediation of fish wastewater using a modified aerated beads biological filter. Misr Journal of Agricultural Engineering, 33(3), 1065-1088.
Abdelbary, K. M. (2017). Comparative study of nitrogen bioremoval from aquaculture wastewater using bioflocs technique (bft) versus biofiltration system. Misr Journal of Agricultural Engineering, 34(2), 1083-1102.
Abdelfatah, A. G., Ali, M. A., & Abdelbary, K. M. (2022). Mechanical filtration pretreatment effect on ammonia biofiltration performance indicators in fish aquaculture wastewater. Misr Journal of Agricultural Engineering. 39 (4), 555- 570. https://doi.org/10.21608/mjae.2022.151866.1082 
Abdelfatah, A. G., Ali, M. A., & Abdelbary, K. M. (2022). Recent Used Techniques and Promised Solutions for Biofiltration Treatment of Fish Wastewater. Egyptian Journal of Chemistry, 65(11), 181–197. https://doi.org/10.21608/ejchem.2022.116302.5268 
Abdulali, T. (2011). Heavy metals concentration in different organs of tilapia fish (Oreochromis niloticus) from selected areas of Bangi, Selangor, Malaysia. African Journal of Biotechnology, 10(55), 11562-11566.
AL Taee, K.  Al-Mallah, K. H. and, Ismail H. K.  (2020). Review On Some Heavy Metals Toxicity On Freshwater Fishes. Journal of Applied Veterinary Sciences, 0(0), 78–86. https://doi.org/10.21608/javs.2020.100157
Baird, R.B.; Eaton, A.D. and Rice, E.W. (2017). Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Standard Methods for the Examination of Water and Wastewater, American Public Health Association.
Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in Pharmacology, 12(April), 1–19. https://doi.org/10.3389/fphar.2021.643972
Binkley,  J. and  Simpson, J.A. (2003). Heavy metals in wastewater treatment processes, Chabter (35) in Handbook of Water and Wastewater Microbiology, Academic Press, An Imprint of Elsevier, 84 Theobald’s Road,London WC1X 8RR,UK.
Coelho, L. M., Rezende, H. C., Coelho, L. M., De Sousa, P. A., Melo, D. F., & Coelho, N. M. (2015). Bioremediation of polluted waters using microorganisms. Advances in bioremediation of wastewater and polluted soil, 10, 60770.
ECP. 501. (2015). Egyptian code of practice for the use of treated municipal wastewater for agricultural purposes. The ministry of Housing Utilities and Urban Communities.
Ehiemere, V. C., Ihedioha, J. N., Ekere, N. R., Ibeto, C. N., & Abugu, H. O. (2022). Pollution and risk assessment of heavy metals in water, sediment and fish (Clarias gariepinus) in a fish farm cluster in Niger Delta region, Nigeria. Journal of Water and Health, 20(6), 927–945. https://doi.org/10.2166/wh.2022.003
El Bahgy, H. E. K., Elabd, H., & Elkorashey, R. M. (2021). Heavy metals bioaccumulation in marine cultured fish and its probabilistic health hazard. Environmental Science and Pollution Research, 28(30), 41431–41438. https://doi.org/10.1007/s11356-021-13645-8
El-Khatib, Z. I. M., Azab, A. M., Abo-Taleb, H. A. H., Al-Absawy, A. N. M., & Toto, M. M. M. (2020). Effect of heavy metals in irrigation water of different fish farms on the quality of cultured fish. Egyptian Journal of Aquatic Biology and Fisheries, 24(5), 261–277. https://doi.org/10.21608/EJABF.2020.104648
Emenike, E. C., Iwuozor, K. O., & Anidiobi, S. U. (2021). Heavy metal pollution in aquaculture: sources, impacts and mitigation techniques. Biological Trace Element Research, 1-17.
Erbanová, E., Palarčík, J., Slezák, M., & Mikulášek, P. (2012). Removing of nitrates from waste water by using pond culture. Procedia Engineering, 42, 1552-1560.
Garai, P., Banerjee, P., Mondal, P., & Saha, N. C. (2021). Effect of Heavy Metals on Fishes: Toxicity and Bioaccumulation. Journal of Clinical Toxicology, 11, 1.
Godoy-Olmos, S., Martinez-Llorens, S., Tomas-Vidal, A., Monge-Ortiz, R., Estruch, G., & Jover-Cerda, M. (2019). Influence of temperature, ammonia load and hydraulic loading on the performance of nitrifying trickling filters for recirculating aquaculture systems. Journal of Environmental Chemical Engineering, 7(4), 103257.
Kapadnis, G., Jain, V., and Vyas, S. (2016). Determination of elements in drinking water as per bureau of indian standards 10500, 14543 & 13428 using the agilent 5100 icp-oes. Agilent Technologies, Inc. Centre of Excellence (CoE), Manesar, India.
Kinuthia, G.K., Ngure, V., Beti, D. , Lugalia, R., Wangila, A., and Kamau L.  (2020). Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication.  Sci Rep 10, 8434 https://doi.org/10.1038/s41598-020-65359-5.
 Kumar, B., Mukherjee, D. P., Kumar, S., Mishra, M., Prakash, D., Singh, S. K., & Sharma, C. S. (2011). Bioaccumulation of heavy metals in muscle tissue of fishes from selected aquaculture ponds in east Kolkata wetlands. Annals of Biological research, 2(5), 125-134.
Leonard, L. S., Mahenge, A., & Mudara, N. (2022). Assessment of Heavy Metals Contamination in Fish Cultured in Selected Private Fishponds and Associated Public Health Risk Concerns, Dar es Salaam, Tanzania. Marine Science and Technology Bulletin, 11, 246–258. https://doi.org/10.33714/masteb.1108314
Madhu, A., & Singh, K. (2017). Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination, 7(4), 387-419. https://doi.org/10.2166/wrd.2016.104.
Martins, C. I., Eding, E. H., & Verreth, J. A. (2011). The effect of recirculating aquaculture systems on the concentrations of heavy metals in culture water and tissues of Nile tilapia Oreochromis niloticus. Food Chemistry, 126(3), 1001-1005.
Md, S. J., Kanungo, I., Tanmay, M. H., & Md, P. S. (2016). A study on the determination of heavy metals in sediment of fish farms in Bangladesh. Fish Aquac J, 7(159), 2.
Musyoka, S. N. (2016). Concept of microbial bioremediation in aquaculture wastes; review.
Nghia, N. D., Lunestad, B. T., Trung, T. S., Son, N. T., & Maage, A. (2009). Heavy metals in the farming environment and in some selected aquaculture species in the Van Phong Bay and Nha Trang Bay of the Khanh Hoa Province in Vietnam. Bulletin of environmental contamination and toxicology, 82(1), 75-79.
Nicula, N. O., Lungulescu, E. M., Ieropoulos, I. A., Rimbu, G. A., & Csutak, O. (2022). Nutrients Removal from Aquaculture Wastewater by Biofilter/Antibiotic-Resistant Bacteria Systems. Water, 14(4), 607.
Olusola, A. V., Folashade, P. A., & Ayoade, O. I. (2012). Heavy metal (lead, Cadmium) and antibiotic (Tetracycline and Chloramphenicol) residues in fresh and frozen fish types (Clarias gariepinus, Oreochromis niloticus) in Ibadan, Oyo State, Nigeria. Pak J Biol Sci, 15(18), 895-9.
Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water, 4(1), 36. https://doi.org/10.1038/s41545-021-00127-0
Raychaudhuri, S. Sen, Pramanick, P., Talukder, P., & Basak, A. (2021). Chapter 6 - Polyamines, metallothioneins, and phytochelatins—Natural defense of plants to mitigate heavy metals. In B. T.-S. in N. P. C. Atta-ur-Rahman (Ed.), Bioactive Natural Products (Vol. 69, pp. 227–261). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-819487-4.00006-9
Resma, N. S., Meaze, A. M. H., Hossain, S., Khandaker, M. U., Kamal, M., & Deb, N. (2020). The presence of toxic metals in popular farmed fish species and estimation of health risks through their consumption. Physics Open, 5(November), 100052. https://doi.org/10.1016/j.physo.2020.100052
Schroeder, J. P., Klatt, S. F., Schlachter, M., Zablotski, Y., Keuter, S., Spieck, E., & Schulz, C. (2015). Impact of ozonation and residual ozone-produced oxidants on the nitrification performance of moving-bed biofilters from marine recirculating aquaculture systems. Aquacultural Engineering, 65, 27-36.
 Sonone, S. S., Jadhav, S., Sankhla, M. S., & Kumar, R. (2020). Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl. NanoBioScience, 10(2), 2148-2166.
Srivastava, N. K., & Majumder, C. B. (2008). Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. Journal of Hazardous Materials,151(1),1–8. https://doi.org/https://doi.org/10.1016/j.jhazmat.2007.09.101
Sultana, N., Sarker, M. J., & Palash, M. A. U. (2017). A Study on the Determination of Heavy Metals in Freshwater Aquaculture Ponds of Mymensingh. Bangladesh Med. J., 3(1), 143-149.
Summerfelt, S. T., Zühlke, A., Kolarevic, J., Reiten, B. K. M., Selset, R., Gutierrez, X., & Terjesen, B. F. (2015). Effects of alkalinity on ammonia removal, carbon dioxide stripping, and system pH in semi-commercial scale water recirculating aquaculture systems operated with moving bed bioreactors. Aquacultural Engineering, 65, 46-54.
 Thorarinsdottir, R. I., Kledal, P. R., Skar, S. L. G., Sustaeta, F., Ragnarsdóttir, K. V., Mankasingh, U., & Shultz, C. (2015). Aquaponics guidelines.
Turcios, A. E., & Papenbrock, J. (2014). Sustainable treatment of aquaculture effluents—what can we learn from the past for the future?. Sustainability, 6(2), 836-856.
Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of environmental management, 93(1), 154-168.
Yadav, M., Gupta, R., & Sharma, R. K. (2019). Chapter 14 - Green and Sustainable Pathways for Wastewater Purification. In S. B. T.-A. in W. P. T. Ahuja (Ed.) (pp. 355–383). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-814790-0.00014-4
You, Sheng-Jie, Tsai  Yung-Pinand Huang, Ru-Yi . (2009). Effects of heavy metals on the specific ammonia uptake rate and nitrate uptake rate in the activated sludge. Journal of Environmental Engineering, Volume 26.
Zadinelo, I. V., Alves, H. J., Moesch, A., Colpini, L. M. S., da Silva, L. C. R., & dos Santos, L. D. (2015). Influence of the chemical composition of smectites on the removal of ammonium ions from aquaculture effluents. Journal of Materials Science, 50(4), 1865-1875.