تحديث أنظمة الري بالتنقيط لتحسين إنتاج محاصيل العلف وترشيد المياه الجوفية في شمال سيناء - مصر: دراسة حالة

نوع المستند : Original Article

المؤلف

أستاذ مساعد - قسم صيانة الأراضي - مرکز بحوث الصحراء - القاهرة - مصر.

المستخلص

أجريت تجارب حقلية في قريتي رومانة وبئر العبد بمحافظة شمال سيناء في ثلاثة مواقع لکل منها، تمت زراعتها بمحاصيل علف الدخن اللؤلؤي وبنجر العلف خلال صيف 2015 وشتاء 2015/2016 على التوالي. وذلک لتقييم أثر تحديث نظام الري بالتنقيط (DI) مع استخدام مستويين من تطبيقات مياه الري: 100 و75٪ من متطلبات المياه الفعلية للمحاصيل (ETc) کمعاملات T100 وT75، على التوالي، والمقارنة مع أشکال أنظمة الري بالتنقيط التي يستخدمها المزارعون المحليون للري (DC). مقاييس الأداء کانت: التوزيع الإحصائي لمعدلات تصرف النقاطات، وکفاءة استخدام مياه الري "Ea٪"، وانتظام توزيع للربع الأدنى "DUlq"، والمحصول الطازج والجاف في کل موسم، وکفاءة استخدام المياه لکلا من المحصول الطازج "WUEf"، والجاف "WUEEd"، وکفاءة استخدام الطاقة في کلا من المحصول الطازج "EUEf"، والجاف "EUEd". کانت أهم النتائج المتحصل عليها هي:
کان هناک أداء جيد مع (DI) من خلال الأداء الممتاز للتوزيع الإحصائي لمعدلات تصرف النقاطات. وتم تسجيل أعلى متوسط لقيم (Ea٪)، و(DUlq)، و(IWUEf)، و(IWUEd)، و(EAEf)، و(EAEd) بواسطة معاملات DIT75 في کلا الموسمين، لجميع المواقع. کما سجل إجمالي المحصول الطازج والجاف بمعاملات DIT100 أعلى متوسط للقيم في کلا الموسمين لجميع المواقع. وکانت متوسطات القيم لنسب توفير المياه من 34.5 الى 29.8٪ بمعاملات DIT75 ومن 13.8 الى 9.8٪ بمعاملات DIT100 تم الحصول عليها في موسمي الصيف والشتاء على التوالي، بالمقارنة مع المعاملة (DC) بين جميع المواقع. بينما کانت متوسطات القيم لنسب توفير الطاقة التشغيلية للري من 33.2 الى 35.5٪ بمعاملات DIT75 ومن 20.6 الى 23.2٪ بمعاملات DIT100 في موسمي الصيف والشتاء على التوالي.

الكلمات الرئيسية

الموضوعات الرئيسية


Abdelraouf, R. E., S. F. El Habbasha,  M. H. Taha and K. M. Refaie (2013). Effect of irrigation water requirements and fertigation levels on growth, yield and water use efficiency in wheat. Middle-East J. of Scientific Research, 16(4), 441-450.
Ali, A., C. Xia, C. Jia and M. Faisal (2020). Investment profitability and economic efficiency of the drip irrigation system: Evidence from Egypt. Irrigation and Drainage, 69(5): 1033-1050.
Allen, R. G.; L. S. Pereira; D. Raes and M. Smith (1998). Crop evapotranspiration: guidelines for computing crop water requirements. (FAO Irrigation and Drainage Paper No. 56) FAO, Rome.
ASAE (1999). Soil and Water Terminology. S 526.1. ASAE Standards. Amer. Soc. Agric. Engineer., St. Joseph, MI, USA.
Attaher, S. M., M.  A. Medany, and A. El-Gindy (2010). Feasibility of some adaptation measures of on-farm irrigation in Egypt under water scarcity conditions. Options. Mediterraneennes, 95(307), 12.
Attia, S. S., A. G. Hani, M. A. Meg, S. E. Kalil, and Y. E. Arafa (2019). Performance analysis of pressurized irrigation systems using simulation model technique. Plant Archives Vol. 19, Supplement 1, pp. 721-731.
Batty, J. C.; S. N. Hamad and J. Keller (1975). Energy inputs to irrigation. J. of Irrig. Drain. Div., ASCE, 101(IR4):293-307.
Black, C. A. “Ed.”(1983). Methods of soil analysis. Part 2, Agron.Monogr.No.9, ASA, Madison, WI, USA.
Burt, C. M., A. J. Clemmens, T. S. Strelkoff, K. H. Solomon, R. D. Bliesner, L. A. Hardy and D. E. Eisenhauer (1997). Irrigation performance measures: efficiency and uniformity. J. of irrig. and drain. Eng., 123(6), 423-442.
Chakwizira, E., J. M. De Ruiter, S. Maley, S. J. Dellow, M. J. George, and A. J. Michel (2014). Water use efficiency of fodder beet crops. In Proceedings of the New Zealand Grassland Association, 76 (1):125-134.
Diotto, A. V., M. V. Folegatti, S. N. Duarte, and T. L. Romanelli (2014). Embodied energy associated with the materials used in irrigation systems: Drip and center pivot. Biosystems Engineering, 121, 38-45.
Doorenbos, J. and W. O. Pruitt (1977). Crop water requirements. FAO Irrig. and Drain. P. 24, 156 pp. Rome, Italy.
Elamin, A. W. M., A. B. Saeed, A. E. Rahma and T. Elgamry (2020). Hydraulic Performance of Drip Emitters under Different Conditions and Water Qualities. Sudan Journal of Desertification Research, 11(1):46-57.
El-Ramady, H. R., S. M. El-Marsafawy, and L. N. Lewis (2013). Sustainable Agriculture and Climate Changes in Egypt. Sustainable Agriculture Reviews, 41–95. doi:10.1007/978-94-007-5961-9_2
El-Sarag, E. I. (2013). Response of fodder beet cultivars to water stress and nitrogen fertilization in semi-arid regions. American-Eurasian J. Agric. Environ. Sci, 13, 1168-1175.
El-Shirbeny, M. A., E. S. Mohamed, and, A. Negm (2018). Estimation of crops' water consumptions using remote sensing with case studies from Egypt. In Conventional water resources and agriculture in Egypt (pp. 451-469). Springer, Cham.
Evans, R. G., I. P. Wu and A. G. Smajstrala (2007). Microirrigation systems. In: Design and Operation of Farm Irrigation Systems HBook, Ch 17 (pp. 633 – 683)
Gomez, K. A. and A. A. Gomez (1984). Statistical procedures for agricultural research. 2nd edition, john Willy and sons Inc. New York. 680p.
Goyal, M. R. (Ed.). (2016). Performance Evaluation of Micro Irrigation Management: Principles and Practices. CRC Press, 339 p.
Holzapfel, E. A., A. Pannunzio, I. Lorite, A. S. S. de Oliveira and I. Farkas (2009). Design and management of irrigation systems. Chilean j. of agricultural research69(1), 17-25.
IPCC, (2014) Climate change: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Chatterjee KJM, Ebi KL, Estrad YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (Eds.) Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1132 pp.
James, L. G. (1988). Principles of farm irrigation system design. Jone Willey and Sons (Ed.), New York, 543 pp.
Kirnak, H., E. Dogan, S. Demir, and S. Yalçin (2004). Determination of hydraulic performance of trickle irrigation emitters used in irrigation systems in the Harran Plain. Turkish J. of Agric. and Forestry, 28(4), 223-230.
Kizer, M. A. (1976). A computer model to simulate farm irrigation system energy requirements. MSc, Oregon State University. 80 pp.
Klute, A. “Ed.”(1986). Water Retention: Laboratory Methods. Chapter 26: Hbook of Methods of Soil Analysis. Part 1. Second Ed. Am. Soc. Agron. Soil Sci. Soc. Am., Madison, WI., USA.
Nazeer, M. (2010). Hydraulic performance of trickle irrigation emitters under field conditions. The Nucleus 47(3): 247-252.
Ouda, S., G., El-Afandi and T. Noreldin (2013). Modeling climate change impacts and adaptation strategies for crop production in Egypt: an overview. Climate Change and Water Resources, 99-120.
Pereira, L.  S. (1999). Higher performance through combined improvements in irrigation methods and scheduling: a discussion. Agric. Water Manag. 40(2) 153-169.
Pereira L.S., I. Cordery and I. Iacovides (2012). Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agr. Water Manage. 108(1), 39–41.
Rafie, R. M., and F. M. El-Boraie (2017). Effect of Drip Irrigation System on Moisture and Salt Distribution Patterns under North Sinai Conditions. Egypt. J. Soil Sci57(3), 247-260.
Raza, A.; J. K. Friedel and G. Bodner (2012). Improving Water Use Efficiency for Sustainable Agriculture. In: Sustainable Agriculture Reviews Vol. (8), Eric Lichtfouse (Edt.), Agroecology and Strategies for Climate Change, Library of Congress Control No. 2011935458: 167-211.
Smajstrla, A. G., B. J. Boman, D. Z. Haman, D. J. Pitts, and F. S. Zazueta (1990). Field evaluation of micro-irrigation water application uniformity. Florida Cooperative Extension Service, Institute of Food and Agric. Sci., Florida U., BUL265, 8pp.
Smith, R. J., J. N. Baillie, A. C. McCarthy, S. R. Raine, and C.P. Baillie (2011). Review of precision irrigation technologies and their applications. U. of Southern Queensland, 94 pp.
Sowers, J., A. Vengosh and E. Weinthal (2011). Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Climatic Change, 104(3), 599-627.