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REMOTE SENSING FOR DETECTING AND
DISTINGUISHING MOISTURE AND NITROGEN
STRESS IN MAIZE

Elmetwalli, A. H.

ABSTRACT

Remote sensing has been known as a robust technique in precision farming
over the last quarter of the 20™ century. It has been successfully used to asses
many biophysical and biochemical properties of various crops. Detecting
stress in crops at an early growth stage is important to limit crop reductions
and therefore increasing productivity. Thus, remote sensing may be a
valuable tool for precision farming in cereal production. The present study
was conducted to investigate the effectiveness of broad band and
hyperspectral remotely sensed data to quantify maize (Zea maize L.) grain
yield under moisture and nitrogen deficiency stresses. The results
demonstrated strong significant correlations between various crop properties
and some vegetation indices. RVI, SAVI, OSAVI and Rso/Rsso were found to
be sensitive to maize grain yield (r > 0.80). The correlations with grain yield
were found to be strongest at the grain filling stage. Penalized Linear
Discrimnant Analysis (PLDA) and Principle Component Analysis (PCA)
demonstrated the possibility to distinguish between moisture and nitrogen
deficiency stress.
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INTRODUCTION

lobally, water is considered as the main limiting factor that reduces

crop productivity especially in arid and semi-arid regions. Paolo and

Rinaldi (2008) investigated maize yield response to irrigation and
nitrogen fertilization and concluded that maize productivity is highly
dependent on irrigation supplies in particular in areas with water limited
conditions. They also reported that irrigation was more effective than
nitrogen in increasing grain yield in two successive years. Increasing water
deficiency reduced the photochemical activity of chlorophyll (Souza et al.,
2004). Drought and low soil fertility are the most stresses threatening maize
production in eastern and southern Africa (Banziger and Diallo, 2004).
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Nitrogen (N) is the most important element affecting crop grain yield and is
the most limiting nutrient in crop production as cropping practices become
more intensive, other nutrients will likely become limiting as well (Osborne
et al. 2002). When plants are subjected to nitrogen stress the first symptom
tends to be yellowing of leaves. Using methods of plant-based measurements
to detect crop status such as canopy temperature are very time consuming and
requires a huge number of observations to characterize a field (Osborne et al.,
2002).

Applying remote sensing technique in the field of precision farming becomes
crucial as a result of limited natural resources. The advances in remote
sensing sensors technology can enhance monitoring techniques in precision
farming. Concentration of photosynthetic pigments within leaves tend to be
the first parts of plants to respond to stress. Leaf pigments such as
chlorophylls, xanthophylls and carotenoids strongly absorb light in the
photosynthetically active portion of the electromagnetic spectrum (Prasad et
al., 2007) and therefore strongly affect the spectral reflectance characteristics
of plant leaves and canopies (Araus et al., 2001). Subsequently, the spectral
reflectance characteristics of plant leaves and/or canopies can be used to
monitor foliar pigment concentrations and thereby obtain a better
understanding of crop health status. Previous studies have documented the
effectiveness of spectral reflectance indices derived from remotely sensed
data for the detection of stress in vegetation. These include for example, the
estimation of chlorophyll a concentration (Ciganda et al., 2009), the
identification of plant disease (Zhang et al., 2012), salinity induced stress
(Elmetwalli, 2008), nitrogen deficiency (Hong et al., 2007) and moisture
stress (Tilling et al., 2007). In plants the concentration of chlorophyll in
leaves is strongly related to N status. Abd-Elrahman et al. (2010) employed
in situ spectroscopy data to detect nitrogen deficiency in sugarcane and
documented the effectiveness of this technique to predict sugarcane leaf
nitrogen. The ability to measure spatial variability in canopy chlorophyll
concentration through remote sensing therefore allows the N status of crops
to be assessed rapidly across large field systems (Daughtry et al., 2000).
Other studies have demonstrated the ability to predict crop grain yield from
remotely sensed data (Babar et al., 2006; Prasad et al., 2007; Weber et al.,
2012). Increased efforts are therefore needed to detect the effects of moisture
and nitrogen induced stress in maize to limit crop reduction and therefore
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increase productivity. However, much of the published research focused on
the remote detection of moisture and nitrogen stress at the leaf scale and
often the effects on canopy structure are given little attention. Measurements
at the canopy scale are arguably important for evaluating the potential
successful implementation of airborne or satellite remote sensing in precision
agriculture. In this research, the remote detection of the combined effects of
moisture and nitrogen deficiency stress on maize crop health and productivity
at both leaf and canopy scales is investigated.

The specific objectives of this research were to; (1) assess the relationship
between maize crop properties and both moisture and nitrogen stressors (2)
identify the optimum vegetation index to predict maize grain yield and (3)
investigate the possibility of distinguishing moisture and nitrogen deficiency
stresses spectrally.

MATERIAL AND METHODS

A field experiment of maize was conducted at North Eltahreer district,
Bohaira Governorate in the summer season of 2009. Maize (single cross 10)
was sown during the second week of May. The soil at this site is a sandy
loam soil with low nitrogen concentration. Maize seeds were sown at a rate
of 33000 seeds per feddan (the recommended rate). Phosphorus and
potassium were applied to all plots at 60 and 60 kg per feddan. The total
amount of phosphorus and potassium was applied during soil preparation.
Four different irrigation regimes at 90, 75, 50 and 25% AW (available water)
were used to subject plants to different levels of moisture stress and four
different nitrogen fertilization rates of 0, 100, 250 and 300 kg N per feddan
were used to subject maize crop to different nitrogen deficiency levels.
Different combinations of both moisture and nitrogen levels were also used.
The experiment was designed as a split plot design with three replicates.
Irrigation treatments were assigned as main plots and nitrogen treatments as
subplots. Nitrogen was applied in two equal doses at 30 and 50 days after
sowing. Maize grain yield was identified for each treatment at harvesting. An
area of 4 m? was harvested for each treatment and then converted to Mg/ha.

Reflectance Spectra acquisition, processing and analysis

An ASD FieldSpec hand held spectroradiometer with a 3.5° field of view
foropic was used to measure the spectral reflectance from plant canopies and
leaves. The spectroradiometer was mounted at the end of a telescopic pole at
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a constant height of 2 m from the soil surface to maximize the scanning area
and was increased to 2.5 at the flowering stage onwards. The instrument has
a spectral range of 350-050 nm which was interpolated to a final spectral
resolution of 0.5 nm. Reflectance spectra of plant canopies were collected
regularly under solar radiation between 11:00 and 15:00 h GMT. Reflectance
measurements were collected from early growth stages before applying
different moisture and nitrogen deficiency treatments and were then repeated
periodically over the growing season until harvest time. The instrument was
calibrated to reflectance using a white spectralon reference panel. Ten spectra
were acquired from each treatment and the mean spectral was calculated.
The spectra were smoothed by passing a 5 nm running mean filter over the
spectrum and truncated between 400 and 900 nm. The spectra were then used
to calculate broad band and hyperspectral vegetation indices as detailed in
Table 1. Different crop properties were recorded at different growth stages
concurrent with the acquisition of spectral reflectance.

Table 1 Examples of spectral vegetation indices calculated from in situ and
laboratory darkroom spectroradiometery

Notation Formulae

NDVI (NIR-Red)/(NIR+Red)
RVI NIR/Red

SAVI (NIR+Red+L)]*(1+L)
GNDV g (NIR-green)/ (NIR+green)
DVI NIR-Red

SR NIR/Red

SLAVI NIR/(Red+NIR)

OSAVI [(NIR-Red)/(NIR+Red+L)]*(1+L), L=0.16
VIl NIR/(green-1)

RDVI NDVI <DVI|

Sl Red/NIR

IPVI NIR/(NIR+Red)

NDVI, Normalized Difference Vegetation Index; RVI, Ratio Vegetation Index;
SAVI, Soil Adjusted Vegetation Index; GNDVI, Green Normalized Difference
Vegetation Index; DVI, Difference Vegetation Index; SR, Simple Ratio; SLAVI,
Specific Leaf Area Vegetation Index; OSAVI, Optimized Soil Adjusted Vegetation
Index; VI1, Vegetation Index One; RDVI, Renormalized Difference Vegetation
Index; SI, Stress Index; IPVI, Infra-Red Percentage Vegetation Index
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Statistical analysis

Minitab v14 was used to perform one and two way analysis of variance
(ANOVA) to establish significant differences in maize responses to moisture
and nitrogen deficiency stress. Data were checked for normality using
Anderson-Darling method with a 95% significance level. The Pearson
Product Moment correlation coefficient was used to test the association
between different vegetation indices and crop yield and to identify optimum
vegetation indices for predicting yield. Simple linear regression analysis was
used to derive regression equations to predict grain yield from reflectance
spectra.

To distinguish moisture and nitrogen deficiency stresses spectrally, the mean
of ten scans was obtained per spectra recorded. This was repeated three times
for different replicates and the overall mean for individual treatments was
then calculated and used in the Principle Component Analysis (PCA) to
initially be used to explore differences in the spectral response from healthy
and stressed treatments. Subsequently, PLDA was performed to determine if
spectral response of plants could be used to predict the source of stress (i.e.
moisture or nitrogen deficiency stress). PLDA was performed on the full
spectra datasets using the mda package.

RESULTS AND DISCUSSION
Effects of moisture and nitrogen deficiency stress on maize grain yield
The results are illustrated in Figures 1 and 2 and detailed in Table 2. The
results demonstrated that both nitrogen deficiency and moisture significantly
affected maize grain yield. Moisture stress strongly reduced grain yield (R? =
0.90, p < 0.005). The highest grain yield of 8.2 Mg/ha was recorded with the
control treatment whilst the lowest grain yield of 1.4 Mg/ha was recorded
with the treatment received 25% FC moisture regime and 0 N. Nitrogen
deficiency also significantly affected maize grain yield. Significant decreases
in maize grain yield were observed with increasing nitrogen deficiency
levels. Maize grain yield fell to about 17 % of the maximum value when
subjected to the lowest watering regime and the highest nitrogen deficiency
level.
Regression analysis
The regression analysis showed a significant linear relationship between
maize grain yield and moisture regime (R? = 0.90; p<0.005) as shown in
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Figure 1. This indicates that yield reductions were highest in treatments with
the lowest watering regimes (25% FC). A further significant linear
relationship was found between maize grain yield and nitrogen deficiency
levels (R? = 0.97; p<0.005) as shown in Figure 1 indicating that grain yield
reductions were greater at the highest nitrogen deficiency levels (zero
nitrogen). The results therefore demonstrated that regression analysis showed
significant relationships between maize grain yield and both moisture and
nitrogen deficiency for all trails.

10 10
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R?=0.9765

81 ¥ =9.9337x - 1,59 $
R?=0.8993
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Figure 1 The relationship between maize grain yield and both moisture and
nitrogen deficiency stress

Correlation between vegetation indices and maize grain yield

A total of 15 broad band and hyperspectral vegetation indices demonstrated
that some vegetation indices correlated strongly with the measured maize
yield. The data collected throughout the growing season was ranked and used
to identify the optimum index for predicting maize yield. The results
demonstrated that at 30 and 45 days, the coefficient of correlation was non-
significant (r < 0.30) for all the tested vegetation indices. Table 2 details the
coefficient of correlation between different vegetation indices and maize
grain yield at different growth stages. At 60 days after sowing, the majority
of tested vegetation indices produced significant correlations with the
measured yield. The coefficient of correlation increased gradually and
reached a maximum value at 90 days after sowing. The results further
demonstrated that both hyperspectral and broad band vegetation indices
provided similar correlations in most cases. RVI, SAVI, R7s0/Rss0 and
OSAVI were found to be the optimum indices for predicting maize vyield.
Figure 3 illustrates the relationship between RVI and maize grain yield. It is
obvious that there is a linear significant relationship between them (R? =
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0.79). These results are in broad agreement with others (Babar et al., 2006;
Prasad et al., 2007) demonstrating that crop yield can be predicted before
maturation.

However, the work presented here at the canopy scale has shown that the
grain filling stage was the optimum stage for predicting grain yield. The
results therefore suggest that remote sensing can provide a reliable approach
to predict crop yield at relatively early stages enabling appropriate
management practices to be implemented to limit crop reductions and thus
increase crop productivity. Moreover, the results showed no advantage of
using hyperspectral indices over broad band indices which is useful to use
high spatial resolution satellite images with low spectral capabilities (e.g.
QuickBird or similar platforms) for monitoring agricultural crops status.
Table 2 Coefficient of correlation for the relationship between vegetation

indices and maize grain yield at different growth stages. Highlighted values
are the strongest correlations

Days after sowing

fndex 30 45 60 73 920

NDVI 0.05 0.18 0.41* 0.71** 0.83**
RVI 0.07 0.22 0.50%* 0.73** 0.89**
SAVI 0.07 -0.04 0.42* 0.62** 0.89**
GNDVI 0.04 0.29 0. 39*=* 0.64** 0.83**
DVI 0.11 -0.13 0. 41* 0.72%* 0.88**
SLAVI 0.03 0.18 0.41* 0.71** 0.83**
OSAVI 0.07 0.01 0.42* 0.72%* 0.89**
RDVI 0.02 0.16 -0.37* 0.68** -0.85%*
SI 0.06 0.21 0.48%* 0.73** 0.88**
IPVI 0.09 0.17 0.38* 0.48** 0.80**
Rss:/Rgo 0.02 -0.27 -0.47% -0.61%* 0.84**
Rs0s/Rrso 0.03 -0.26 -0.52% -0.58** 0.85%*
R710/Rr6o 0.02 -0.23 -0.50% -0.64** 0.87**
R7z0/Rzz0 0.06 0.29 -0.60% -0.68%* 0.89**
R7z0/Rano 0.01 0.20 0.58* 0.72%* 0.85%*

*Significant at 95%  **Significant at 99%
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Figure 2 The relationship between RVI derived from hyper spectral
measurements and maize grain yield at the flowering stage

Distinguishing between moisture and nitrogen deficiency stresses

To distinguish between moisture and nitrogen deficiency stresses, the
principle component analysis (PCA) was performed on full spectra collected
at different growth stages and showed the possibility to distinguish both
sources of stress at the flowering and the grain filling stages. As shown in
Fig. 3 there is a specific trend for both stressors to plot in separate quarters.
The obtained PCA loading plots suggest that reflectance spectra in the visible
part of the magnetic spectrum were the most strongly correlated with the
level of stress. The NIR part also showed the possibility to distinguish
between moisture and nitrogen stresses. To have a clear distinguish between
these two stressors, the PDLA was also run on all spectra at different growth
stages. The results demonstrated that the spectra collected at the canopy scale
showed better distinguish between both stressors which are in agreement with
others findings (Wang et al. 2002; Elmetwalli, 2010). The PDLA
demonstrated that it was possible to predict the source of stress in maize
particularly for the spectra collected at the canopy scale. Table 3 details the
results of the PDLA for the spectra collected at the flowering stage. The
user's accuracy reached 100% in five treatments out of eleven and over 50%
in two other treatments. Also, the producer's accuracy reached over 60% in
seven treatments four of those a 100%. The training misclassification rate
was 0.098 whilst the prediction misclassification rate was 0.28. These results
obviously demonstrate that the PDLA showed the ability to distinguish most
differences between moisture and nitrogen deficiency stresses. The results
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therefore showed the effectiveness of remotely sensed data to distinguish
sources of stress (e.g. moisture and nitrogen deficiency) to make better
decisions to avoid crop reductions. The new satellite platforms such as
VENUS and Hyperion (more than 200 bands) can therefore be used
effectively to distinguish sources of stress at a large scale.

Score Plot of 402.5, ..., 997.5

W1
LWLN
d )

Control
L)

T T T T T T
-15 -10 -5 0 5 10 15
First Component

Fig.3 Score plot of PCA for whole spectra collected from control, moisture
and nitrogen induced stressed maize canopies at 90 days after sowing (n=11).

Table 3 Confusion matrix for PDLA run on spectra collected from maize
subjected to moisture and nitrogen deficiency stresses.

Second Component

PDLA Total

user

C W1l W2 W3 N1 N2 N3 LWHN LWLN HWHN HWLN accuracy

C 4 1 0 0 4 0 0 0 0 0 0 9 0.44
w1 5 6 0 0 0 0 0 0 0 0 0 11 0.55
W2 0 0 0 0 0 0 0 0 0 0 0 0 0.00
W3 0 0 6 6 0 0 0 4 0 0 0 16 0.38
N1 0 0 0 0 7 0 0 0 0 0 0 7 0.00
N2 0 0 0 0 0 7 0 0 0 0 0 7 1.00
N3 0 0 0 0 0 7 8 0 0 0 0 8 1.00
LWHN 0 0 0 0 0 0 8 2 0 0 0 2 1.00
LWLN 0 0 0 0 0 0 0 0 5 0 0 5 1.00
HWHN 0 0 0 0 0 0 0 0 0 4 0 4 1.00
HWLN 0 0 0 0 0 0 0 1 2 0 6 9 0.67
Total 9 7 6 6 11 7 0 7 7 4 6 78
Producer's 0.44 086 000 100 064 0.00 1.00 0.29 0.71 1.00 1.00
accuracy

Training misclassification rate Prediction misclassification rate

0.098 0.28

Labels: C-control; W1-W3, high-low available water; N1-N3, high to low nitrogen rates;
LWHN-low watering high nitrogen; LWLN-low watering low nitrogen; HWHN-high
watering high nitrogen; HWLN-high watering low nitrogen

CONCLUSION
The effectiveness of hyperspectral and broad band remote sensing data for
predicting maize grain yield in response to moisture and nitrogen deficiency
stress was investigated in this study. It can be concluded that the flowering

Misr J. Ag. Eng., July 2014 - 761 -



IRRIGATION AND DRAINAGE

and grain filling stages are the optimum growth stages of maize to collect
reflectance measurements to predict crop yield. The obtained results showed
that the RVI and SAVI, OSAVI and R7so/Rsso provided the optimum indices
for predicting maize yield. The PCA and PDLA showed the potential to
distinguish between moisture and nitrogen deficiency stresses. Additionally,
hyperspectral data provided no advantage over broad band indices in these
predictions. Consequently, broad band satellite-based remote sensing
platforms with high spatial and high spectral resolution capabilities would be
well suited to predict maize grain yield in semi arid and arid environments.

Here the novel potential of using remote sensing was demonstrated to detect

nitrogen deficiency as well as moisture induced stress at the leaf and canopy

scales.
REFERENCES

Abdel-Rahman, E. M.; Ahmed, F. B. and Van Dan Berg, M. (2010).
Estimation of sugarcane leaf nitrogen concentration using in situ
spectroscopy. International Journal of Applied Earth Observation and
Geoinformation, 125: 552-557.

Araus, J. L.; Casadesus, J. and Bort, J. (2001). Recent tools for the screening
of physiological traits determining yield. P. 59-77. In M.P. Reynolds, J.
I. Ortiz-Monasterio and A. Mcnab (Eds.) Application of physiology in
wheat breeding. CIMMYT, Mexico.

Babar, M. A.; Reynolds, M. P.; van Ginkel, M.; Klatt, A. R.; Raun, W. R.
and Stone, M. L. (2006). Spectral reflectance indices as a potential
indirect selection criteria for wheat yield under irrigation. Crop Sci. 46:
578-588.

Banziger, M. and Diallo, A. O. (2004). Progress in developing drought and N
stress tolerant maize cultivars for eastern and southern Africa. Pp. 189-
194 In D.K. Friesen and A.F.E. Palmer (eds). Integrated approaches to
higher maize productivity in the new millennium. Proceeding of the 7™
eastern and southern Africa regional maize conference, 5-11 February
2002. CIMMYT/KARI, Nairobi, Kenya.

Ciganda, V.; Gitelson, A. and Schepers, J. (2009). Non-destructive
determination of maize leaf and canopy chlorophyll content. Journal of
Plant Physiology, 166: 157-167.

Daughtry, C. S. T.; Walthall, C. L.; Kim, M. S.; Brown de Colstoun, E. and
McMurtrey, J. E. (2000). Estimating corn leaf chlorophyll
concentration from leaf and canopy reflectance. Remote Sensing of
Environment 74: 229-239.

Elmetwalli, A.M. (2008). Remote sensing as a precision farming tool in the
Nile Vally, Egypt. Ph.D Thesis in Environmental Sciences, School of

Misr J. Ag. Eng., July 2014 - 762 -



IRRIGATION AND DRAINAGE

Biological and Environmental Sciences, University of Stirling, Stirling,
UK.

Elmetwalli, A.H. (2010). The potential of Remotely sensed data to predict
wheat yield under moisture and nitrogen defeciency stress. Misr J.
Agric. Eng., 27(4): 1823-1835.

Hong, S.-D.; Schepers, J. S.; Francis, D. D. and Schlemmer, M. R. (2007).
Comparisons of ground-based remote sensors for evaluation of corn
biomass affected by nitrogen stress. Communications in Soil Science
and Plant Analysis 38: 2209-2226.

Osborne, L. S., Schepers, J. S., Francis, D. D. and Schlemmer, M. R. (2002).
Detecting Phosphorus and Nitrogen Deficiencies in Corn Using
Radiance Measurements. Agronomy Journal 94: 1215-1221.

Paolo, E. and Rinaldi, M. (2008). Yield response of corn to irrigation and
nitrogen fertilization in a Mediterranean environment. Field Crops
Research 105: 202-210.

Prasad, B., Carver, B. F.; Stone, M. L.; Babar, M. A.; Raun, W. R. and Klatt,
A. R. (2007). Potential use of spectral reflectance indices as a selection
tool for grain yield in winter wheat under Great Plains conditions. Crop
Science 47: 1426-1440.

Souza, R. P., Machado, E. C., Silva, J. A. B., Lagoa, A. M. M. A. and
Silveira, J. A. G. (2004). Photosynthetic gas exchange, chlorophyill
fluorescence, and some associated metabolic changes in cowpea (Vigna
unguiculata) during water stress and recovery. Environ. Exp. Bot. 51.:
45-56.

Tilling, A. K.; Leary, G. J.; Ferwerda, J. G.; Jones, S. D.; Fitzgerald, G. J.;
Rodriguez, D. and Belford, R. (2007). Remote sensing of nitrogen and
water stress in wheat. Field Crops Research 104: 77-85.

Wang, D.; Wilson, C. and Shannon, M. C. (2002). Interpretation of salinity
and irrigation effects on soybean canopy reflectance in visible and near
infrared spectrum domain. International Journal of Remote Sensing
23(5): 811-824.

Weber, V.S.; Araus, J.L.; Cairns, J.E.; Sanchez, C.; Melchinger, A.E. and
Orsini, E. (2012). Prediction of grain yield using reflectance spectra of
canopy and leaves in maize plants grown under different water regimes.
Field Crops Research, 128: 82-90.

Zhang, J. C.; Pu, R.L.; Wang, J.H.; Haung, W.J. Yuan, L. and Luo, J.H.
(2012). Detecting powder mildew of winter wheat using leaf level
hyperspectral measurements. Computers and electronics in Agriculture,
85:13-23

Misr J. Ag. Eng., July 2014 - 763 -



IRRIGATION AND DRAINAGE

ol padlal)
lsall ki (gl O el s Sl day 08 ladiad)
SJM\JWUJ;U-.‘#JM‘MU
% Jgiall DA Jute

DA d8dall del 3l 8 Legle daiay A ddle AE ey 2 e JldinY) O Gigaall e
el 5 Agmaadal) a8 (g duaall a5 Al Cpelal G palall 0 8 e R YT )
e A1 S dlga ) 3aa3 (e Y Jualaall 4als) (aliad) e 2ally Adlia) Jualaall
o Allad A any e laiiny) e aldie ) (Say Bland) 13 8 canlial )l Ay gall)
Yoed alad Casall age A 331 Jseana o Al all 38 cy jal Al Jualadll L)
by aladiu) Al Al ) Caags bl Alsilas p aidll Ay e dilaiey Lald dc ) e
iy Sl gadl da jai die 3 A J seana daalill o 8 28 e an oo laddud)
Jsmane Gl gl e lSai¥) Ll (e Ay el 4 padll IV s g 5il) syl
Oe AdliSe Ol gidd J ganall (i jad o3 Gl Al jals J seanall Apaliily soll Caandiid 530
(IS lS (Al s a3l apandlll 5 obaall (o IS i Slga
ALl el elall 0 %3+ (YO ¢ 04 (YO e Chal sliall A8Lizal
DUSa/aaS Fov (Yoo Vo v ¢ Hiia: s gyl dendll Jana
] Al e aeay A3 e salll aus sl AABAAN Jal el die (ulSesY) ClulE gpend o
A i) JAVally Al o8 Jay 5 J samnall alii) a3 as sall Ailgd 5 Adlidall Lgilia
e Jlafia) il maentl alage il LR Giagr saill s e (g A je JSI Adlisdl)
1 SUIS Lo Jhaniall i) aaf iS5 J geanall daliily a8 (3 aad )

O Com 5,0 Jpemns o (g gine i n g il dandll 5 olall (g0 IS (i ST o

30 e J geana J8) Culac ] s g il dandl) all g sliall dlgal e Alalas
A padll G pbsall g 50 Jsana G Ay sine Ll ) Al il & jell e
eyl Ll (e A geendl)
3,A Jseana (g (ulSai¥) LU apendl gai Ala je cau) o i) @ ekl Gl o

ol ledla e (oo

RVI - SAVI - OSAVI - & 5 3l dpalisly 5uill 4y JVs ol o Lal aa s o
R7s0/Rss0

Sl (ai Ge sball (ali juai 23Sl PLDA 5 PCA (e S dilai jelal o
s gl

Jishl o Llua 8 saaizall 4 juadl) il udigall aladial of 4l jall @ jelal Gl o

Lpadll Gl yEsdl e 33 W oud (hyperspectral indices) siase 4o 5o

¢l paall ¢ ¢l padll dslid (broad band indices) 4l <y e sadiadl

Lelia Ll ) gem aladinl 4lSa) Gasd e i b G Millyy ol jeall cany
Asadall ) giall e 3 gana 20 I

aa Uaih daaly — Ao ) 3 S — Ao ) 31 digh) and — 4o ) 31 Aigh) (g jda®

Misr J. Ag. Eng., July 2014 - 764 -



