THE EFFECT OF BUFFALO DUNG TREATMENT WITH PAUNCH FLUID ON BIOGAS PRODUCTION

Document Type : Original Article

Authors

1 Assist. Lecturer, Nat. Inst. of Laser Enhanced Sc. (NILES), Cairo University, Egypt.

2 Assoc. Prof., Ag. Eng. Dept., Fac. of Agric., Cairo University, Egypt.

3 Assoc. Prof., Ag. Eng. Dept., Fac. of Agric., Suez-Canal University, Egypt.

4 Prof. Dr., Nat. Inst. of Laser Enhanced Sc. (NILES), Cairo University, Egypt.

Abstract

Anaerobic digestion is a biological process used to convert organic wastes into biogas and a stable bio-fertilizer for agricultural applications as environmentally friendly product. The produced biogas is used as an alternative renewable energy source. The aim of this study was to analyze the influence of paunch fluid (PF) content on biogas and methane yield from buffalo dung as biowastes. A series of laboratory experiments using 2 L biodigesters (i.e., BD1 till BD6) were carried out in batch operation mode. Each biodigester was fed with fixed 750 g of fresh buffalo dung (D) and mixed with 750 ml of PF and distill water (W) with different ratios (i.e., BD1= 50%, BD2= 50%, BD3= 37.5%, BD4= 37.5%, BD5=0% and BD6= 100% of PF). The results showed that the best performance for biogas and methane production was the biodigester BD3 and BD4 with 37.5% of PF, i.e. biogas yield was 205.8 and 224.2 ml g VS-1, respectively, after 40 days of hydraulic retention time (HRT). While the other biodigesters BD1, BD2, BD5 and BD6 with 50, 50, 0 and 100% of PF delivered a biogas yield of 177.3, 133.1, 172.7 and 0 ml g VS-1, respectively. Additionally, methane production showed the similar performance, i.e. digesters BD4, BD3, BD1, BD5, BD2 and BD6 delivered a methane yield of 144.7, 130.3, 120.4, 104.8, 84.2 and 0.0 ml g VS-1, respectively. These results showed that, the highest biogas and methane yield was delivered when buffalo dung was treated with 37.5% of PF. Although, many references showed that, 50% of PF delivered the highest biogas and methane yields. Therefore, the effect of PF concentration on biogas and methane production must be investigated intensively.
 

Keywords


Abbasi, T.; Tauseef, S. M. and Abbasi S. A. (2012a): Anaerobic digestion for global warming control and energy generation-An overview Renewable and Sustainable Energy Reviews 16 (2012) 3228– 3242
Abbasi, T.; Tauseef, S. M. and Abbasi, S. A. (2012b): Biogas energy. New York: Springer Verlag; 169 pp.
Abdel-Hadi, M. A. and Abd El-Azeem, S. A. M. (2008): Effect of Heating, Mixing and Digester Type on Biogas Production from Buffalo Dung. Misr J. Ag. Eng. 25(4): 1454-1477.
Aurora, S. P. (1983): Microbial Digestion in Ruminants. Indian Council of Agricultural Research, New Delhi.
Berndes, G.; Hoogwijk, M. and van den Broek, R. (2003): The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy, 25: 1-28.
Black, C. A.; Evans, D. D.; Evsminger, I. E.; Clerk, F. E. and White, J. L. (1965): Methods of Soil Analysis: Part 1. American Society of Agronomy, Inc., Madison, USA.
Budiyono, B.; Widiasa, I. N.; Johari, S. and Sunarso S. (2009): Influence of inoculum content on performance of anaerobic reactors for treating cattle manure using rumen fluid inoculum. International Journal of Engineering and Technology, 1(3): 109-116.
Castillo, R. T.; Luengo, P. L. and Alvarez, J. M. (1995): Temperature effect on anaerobic of bedding manure in a one phase system at different inoculums concentration. Agriculture, Ecosystems and Environment, 54: 55-66.
Chen, Y.; Cheng, J. J. and Creamer, K. S. (2008): Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99(10): 4044–64.
Chhabra, A.; Manjunath, K.; Panigrahy, S. and Parihar, J. (2009): Spatial pattern of methane emissions from Indian livestock. Current Science; 96(5): 683–9.
Deutsche Gesellschaft für Solarenergie e.V., (DGS). (2006): Study on Solar and Biomass Energy Potential and Feasibility in Lao PDR Asia Pro Eco project TH/Asia Pro Eco/05 (101302). International Solar Energy Society, Germany.
Diaz, I.; Lopes, A.C.; Pérez, S.I. and Fdz-Polanco, M. (2010): Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion. Bioresource Technology, 101(20): 7724–30.
El-Mashad, H. M.; Zeeman, G.; Van Loon, Wilko K. P.; Bot, G. P. A. and Lettinga, G. (2004): Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresource Technology, 95: 191-201.
El-Mashad, H. M.; Van Loon, Wilko K. P.; Zeeman, G.; Bot, G. P. A. and Lettinga, G. (2003): Reuse potential of agricultural wastes in semi-arid regions: Egypt as a case study. Environmental Science & Bio/Technology, 2: 53-66.
EPA. (2001): Total, Fixed, and Volatile Solids. Method 1684, January 2001. U.S. Environmental protection Agency, Engineering and Analysis Division (4303), 1200 Pennsylvania Ave. NW Washington, DC 20460.
Erickson, L. E.; Fayet, E.; Kakumanu, B. K. and Davis, L. C. (2004): Anaerobic Digestion. National Agricultural Biosecurity Center. Kansas State University.
FAO. (2005): Relevance of Biogas Technology to Nepal. SESSION TWO, Consolidated Management Services Nepal. FAO/TCP/NEP/4415-T
Ferrer, I.; Garfi, M.; Uggetti, E.; Ferrer-Marti, L.; Calderon, A. and Velo, E. (2011): Biogas production in low-cost household digesters at the Peruvian Andes. Biomass and Bioenergy; 35(5): 1668–74.
Hansen, T. L.; Schmidt, J. E.; Angelidaki, I.; Marca, E.; Jansen, J.; Mosbaek, H. and Christensen, T. H. (2004): Method for determination of methane potentials of solid organic waste. Waste Management 24: 393-400.
 Holm-Nielsen, J.B.; Al Seadi, T. and Oleskowicz-Popiel, P. (2009): The future of anaerobic digestion and biogas utilization. Bioresource Technology 100(22): 5478-5484.
Janssen, P. H. (2010): Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Animal Feed Science and Technology; 160(1-2): 1-22.
Keshtkar, A.; Meyssami, B.; Abolhamd, G.; Ghaforian, H. and Khalagi Asadi, M. (2003): Mathematical modeling of non-ideal mixing continuous flow reactors for anaerobic digestion of cattle manure. Bioresource Technology 87: 113–124
Köttner, M. (2003): Integration of biogas technology, organic farming and energy crops. The future of biogas in Europe II, European biogas workshop, October 2nd to 4th 2003, University of Southern Denmark esbjerg / Denmark.
Liu, G.; Zhang, R.; El-Mashad, H. M. and Dong, R. (2009): Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresource Technology 100: 5103-5108.
Lopes, W. S.; Leite, V. D. and Prasad, S. (2004): Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste. Bioresource Technology 94(3): 261-266.
Nanda, A. S. and Nakao, T. (2003): Role of buffalo in the socioeconomic development of rural Asia: Current status and future prospectus. Animal Science Journal 74: 443-455.
Ndegwa, P. M. and Thompson, S. A. (2001): Integrating composting and vermin composting the treatment and bioconversion of biosolids. Bioresource Technology 76: 107-112.
Nopharatana, A.; Pullammanappallil, P. C. and Clarke, W. P. (2007): Kinetics and dynamic modeling of batch anaerobic digestion of municipal solid waste in a stirred reactor. Waste Management 27: 595-603. DOI: 0.1016/ j.wasman. 2006.04.010.
Nusbaum, N. J. (2010): Dairy livestock methane remediation and global warming. Journal of Community Health, 35(5): 500-2.
Rofiqul, I. M.; Rabiul, I. M. and Rafiqul, A. M. (2008): Renewable energy resources and technologies practice in Bangladesh. Renewable and Sustainable Energy Reviews 12: 299-343.
Samer, M. (2010): A software program for planning and designing biogas plants. Transactions of the ASABE 53(4): 1277-1285.
Samer, M. (2012): Biogas plant constructions. In: Biogas, S. Kumar (ed.), ISBN 978-953-51-0204-5. Rijeka, Croatia: InTech. DOI: 10.5772/31887. pp. 343-368.
Samer, M., Mostafa, E. and Hassan, A. M. (2014): Slurry treatment with food industry wastes for reducing methane, nitrous oxide and ammonia emissions. Misr J. Ag. Eng., 31 (4):1523-1548.
Shilpkar, P. M. S. and Chaudhary, D. R. (2007): An alternate use of Calotropis gigantea: Biomethanation. Current Science 92 (4): 435-437.
Singh, R. and Mandal, S. K. (2011): Microbial removal of hydrogen sulfide from biogas. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects; 34(4): 306–15.
Sonakya, V., Raizada, N., Dalhoff, R., Wilderer, P.A. (2003): Elucidation mechanism of organic acids production from organic matter (grass) using digested and partially digested cattle feed. Water Sci. Technol. 48, 255–259.
Sunarso, S.; Johari, S.; Widiasa, I. N. and Budiyono, B. (2010): The effect of feed to inoculums ratio on biogas production rate from cattle manure using rumen fluid as inoculums. International Journal of Science and Engineering, 1(2): 41-45.
USEPA. (2012): Sources and Emissions | Methane | Climate Change | gU.S. EPA. U. S. Environmental Protection Agency, Available: http://epa.gov/methane/sources.html
Weiland P. (2010): Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, 85(4): 849–60.
Weimer, P. J.; Russell, J. B. and Muck, R. E. (2009): Lessons from the cow: what the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass. Bioresource Technology, 100(21): 5323–31.
Wijekoon, K. C.; Visvanathan, C. and Abeynayaka, A. (2011): Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two stage thermophilic anaerobic membrane bioreactor. Bioresource Technology, 102 (9): 5353-5360.
Yue, Z. B. and Yu, H. Q. (2009): Anaerobic batch degradation of cattail by rumen cultures. Int. J. Environ. Pollut., 38, 299–308.
Yue, Z. B.; Li, W. W. and Yu, H. Q. (2013): Application of rumen microorganisms for anaerobic bioconversion of lignocellulosic biomass. Bioresource Technology, 128: 738–744