EFFECT OF TANK GEOMETRIC SHAPE RATIO ON PRODUCTIVITY OF RECIRCULATING AQUACULTURAL SYSTEM

Document Type : Original Article

Authors

1 Demonstrator Aquac., Eng., Fac. Fish Resources, Suez Univ., Egypt

2 Prof. of Agric. Eng., Fac. of Agric., Ain Shams Univ., Egypt

3 Ass. Prof. of Agric. Eng., Fac. of Agric., Ain Shams Univ., Egypt

4 Prof. of Aquac., Fac. Fish Resources, Suez Univ., Egypt

Abstract

The main aim of this work is to study the effect of tank diameter depth ratio on the water quality and productivity of recirculating aquacultural system to reach the optimum tank diameter: water depth ratio.The obtained results indicated that the mean weight of fish increased from 18 to 148, 18 to 136 and 18 to 114 g after 14 weeks with the diameter depth ratios 4, 6.4 and 8, respectively. The average weight gain of fish increased from 2 to 21, 8 to 13 and 3 to 6 g after 14 weeks with the diameter depth ratios 4, 6.4 and 3, respectively. The specific growth rate ranged from 0.99 to 6.00, 0.39 to 5.25 and 0.17 to 5.10 % day-1 at 4, 6.4 and 8 diameter depth ratio. The feed conversion rate ranged from 0.68 to 3.53, 0.88 to 10.91 and 0.93 to 18.51 kg feed/kg fish at 4, 6.4 and 8 diameter depth ratio. The feed efficiency ranged from 0.28 to 1.46, 0.11 to 1.13 and 0.05 to 1.39 at 4, 6.4 and 8 diameter depth ratio. The mean daily mortality rates were 0.048, 0.058 and 0.064 % at 4, 6.4 and 8 diameter depth ratio, respectively.

Keywords


Ali, S.A., El-Haddad, Z.A., AND Gharieb, A. (2006). Design of a Rotating Biological Contactor in a Recirculating Aquaculture System. Misr J. Ag. Eng., 23(2): 396-408.
Appleford, P., J. S. Lucas and P. C. Southgate (2003). General principles. In: Lucas, J. S. and P. C. Southgate, (Eds.). Aquaculture: Farming Aquatic Animals and Plants. Blackwell Publishing, Oxford, England. P. 11-46.
Chenoweth, H.H., Larmoyeux, J.D., Piper, R.G. (1973). Evaluation of circular tanks for salmonid production. Prog. Fish-Cult., 35:122-131.
Cripps, S. J., Poxton, M. G. (1992). A review of the design and perform of tanks relevant to flatfish culture. Aquacultural Engineering, 11: pp 71-91.
Duarte, S., Reig, L., Masaló, I., Blanco, M., Oca, J. (2011). Influence of tank geometry and flow pattern in fish distribution. Aquacultural Engineering, 44: 48–54.
Hamlin, H.J., Michaels, J.T., Beaulaton, C.M., Graham, W.F., Dutt, W., Steinbach, P., Losordo, T.M., Schrader, K.K., Main, K.L. (2008). Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture. Aquacultural Engineering, 38:79-92.
Imsland, A. Ksunde., L. M. Folvord, A. and Stefansson, S. O.  (1996). The interaction of temperature and fish size on growth of juvenile turbot. J. Fish Biol., 49: 926-940.
Jauncey, K. and Ross, B. (1982). A guide to tilapia feeds and feeding. Institute of aquaculture, university of sterling, Scotland. 111 pp.
Klapsis, A., Burley, R. (1984). Flow distribution studies in fish rearing tanks. Part 1, Design constraints. Aquacultural Engineering, 3:pp 103-118.
Labatut, R. A. (2001). Aplicacion de ozono en un sisttema de recirculacion para el cultivo de juveniles de turbot, Scophthalmus maximus en shallow raceways. Memoria de titulo, Universidad Catolica del, Coquimbo, Chile, pp. 113.
Larmoyeux, J.D., Piper, R.G., Chenoweth, H.H. (1973). Evaluation of circular tanks for salmonid production. The Progressive Fish-Culturist, 35(3):p 122-131.
Libey, G.S. (1993). Evaluation of a drum filter for removal of solids from a recirculating aquaculture system. In: J.K. Wang (Ed.), Techniques for modem aquaculture. St. Joseph, Ml, American Society of Agricultural Engineers, pp. 519-532.
Lin, Y.F., Jing, S.R., Lee, D.Y., Chang, Y.F., Chen, Y.M., Shih, K.C. (2005). Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate. Environ. Pollut., 134 (3):411-421.
Palstra, A.P., Planas, J.V. (2011). Fish under exercise. Fish Physiology and Biochemistry, 37:259-272.
Piper, R.E., McElwain, LB., Orme, L.E., McCraren, J.P., Fowler, L.GLconard, J.R. (1982). Fish Hatchery Management. U.S. Fish and Wildlife Service, Washington, DC.
Poxton, M.G., Murray, K.R. and Linfoot, B.T. (1982). The growth of turbot (Scophalmus maximus) in recirculating systems. Aquacultral Engineering, 1:23-34.
Rakocy, J.E. (1989). Tank culture of tilapia. In the biology and culture of tilapia, ed. R. S. V. Pullin & R. H. Lowe-McConell-ICLARM conference proceedings 7. International center for living aquatic resources management, manila, the Philippines.
Rodrigo, A.L. and Olivares J.F. (2004). Culture of turbot (Scopphthalmus maximus) juveniles using shallow raceways tanks and recirculation. Aquacultural Engineering, 32:113-127.
Ross, R.M., Watten, B.J., Krise, W.F. and Dilauro, M.N. (1995). Influence of tank design and hydraulic loading on the behaviour, growth, and metabolism of rainbow trout (Oncorhynchus mykiss). Aquaculture Engineering, 14:29-47.
Timmons, M.B., Summerfelt, S.T. and Vinci, B.J. (1998). Review of circular tank technology and managment. Aquacultural Engineering, 18:51-69.
Timmons, M.B., Ebeling, J.M., Wheaton, F.W., Summerfelt, S.T. and Vinci, B.J. (2010). Recirculating Aquaculture Systems, 2nd Edition. Cayuga Aqua Ventures, Ithaca, NY 14850, USA. 939 p. NRAC Publication No. 401-2010.
Wheaton, F.W. (1977). Aquacultural Engineering, Wiley, New York.