CHARACTERIZATION OF WATER APPLICATION UNIFORMITY, RUNOFF AND WIND DRIFT EVAPORATION LOSSES UNDER CENTER PIVOT IRRIGATION SYSTEM

Document Type : Original Article

Authors

1 demonstrator of Agriculture Eng. - Faculty of Agric. - Cairo Univ., Egypt.

2 Professor of Agriculture Eng. - Faculty of Agric. - Cairo Univ., Egypt.

3 Associate Professor of Agriculture Eng. - Faculty of Agric. - Cairo Univ., Egypt.

Abstract

The effect of water distribution uniformity (CU) on crop yield uniformity (CU yield) from a center pivot irrigation system operating under field conditions was analyzed. A field experiment was performed during two seasons (2015), located in Elmina, Alexandria and Ismailia (Egypt), in 31.3, 30.7 and 63ha. respectively plot irrigated with a center pivot system. The objectives of this paper are to study water application uniformity (CU) , run off and wind drift evaporation losses (WDEL) with two types of fixed spray plate sprinklers (FSPS): Senninger (LND-UP3-Inv. wobbler) and Nelson (D3000) both installed at the same height (1.5 m above the ground). Different predictive equations of WDEL were proposed for combinations of the two irrigation systems and the two operation times. Most equations use wind speed alone as an independent variable, although some use relative humidity or combinations of both variables plus air temperature. The results show that For two season, Senninger had higher values of CU (80–85%) than the nelson (75–80%). In sprinkler irrigation, a CU value of around 80% for each types of sprinklers can be sufficient to provide good crop yield uniformity, the mean value of run off 29% from water applied, WDEL were significantly higher with nelson (D3000) than with Senninger (LND-UP3-Inv. wobbler). The lowest WDEL values were registered with ranging from 14 to 19% under winter and summer operation conditions, respectively and mean yield for potato and sugar beet 32.7 and 91.2 ton/ha., respectively. These results were obtained for an average wind speed of 4.4 m/s at summer and 3.5 m/s during the winter   and were normally below 5 m/s.

Keywords


Abo-Ghobar, H.M., 1992. Losses from low-pressure center-pivot irrigation systems in a desert climate as affected by nozzle height. Agric. Water Manage., 21: 23-32.
Allen, R. G., Keller, J. and Martin, D., 2000. Center Pivot System Design. The Irrigation Association. www.irrigation.org.
Bandyopadhayay, A., Bhadra, A., Raghuwanshi, N. S., & Singh, R. (2009). Temporal trends in estimates of reference evapotranspiration over India. Journal of Hydrologic Engineering, 14(5), 508e518.
Bernuth, R.D., 1988. Effect of trajectory angle on performance of sprinklers in wind. J. Irrig. Drain. Div., ASCE, 114(4): 579-587.
Boserup, E. (2005). The conditions of agricultural growth: The economics of agrarian change under population pressure (p. 137). Transaction Publishers.
Carrio´n, P., Tarjuelo, J.M., Montero, J., 2001. SIRIAS: a simulation model for sprinkler irrigation: I. Description of the model. Irrig. Sci. 20 (2), 73–84.
Christiansen, J. E., 1942. Irrigation by sprinkling. California Agricultural Experiment Station Bulletin, P.670.
Dechmi, F., Playa´n, E., Cavero, J., Faci, J.M., Martı´nez-Cob, A., 2003a. Wind effects on solid set sprinkler irrigation depth and corn yield. Irrig. Sci. 22 (2), 67–77.
Dechmi, F., Playa´n, E., Faci, J.M., Tejero, M., Bercero, A., 2003b. Analysis of an irrigation district in northeastern Spain: II: Irrigation evaluation, simulation and scheduling. Agric. Water Manage. 61, 93–109. distributions for irrigation spray nozzles. Transactions of the distributions for irrigation sprinklers. Transactions of the ASAE, Drainage Engineering, 126(3), 142–148, ASCE.
Dechmi, F., Playan, E., Cavero, J. Faci, J. M. and Martinez-Cob, A., 2003. Wind effects on solid set sprinkler irrigation depth and yield of maize (Zea mays)
Faci, J. M., Salvador, R., Playa´ n, E., & Sourell, H., 2001. Comparison of fixed and rotating spray plate sprinklers. Journal of Irrigation and Drainage Engineering, 127(4), 224–236, ASCE.
Faci, J.M., Bercero, A., 1991. Efecto del viento en la uniformidad y en las pe´rdidas por evaporacio´n y arrastre en el riego por aspersio´n. Inv. Agric. Prod. Prot. Veg. 6 (2), 171–182.
Faci, J.M., Salvador, R., Playa´n, E., Sourell, H., 2001. A comparison of fixed and rotating spray plate sprinklers. J. Irrig. Drain. Eng., ASCE 127 (4), 224–233.
Fukui, Y., Nakanishi, K., Okamura, S., 1980. Computer evaluation of sprinkler irrigation uniformity. Irrig. Sci. 2, 23–32.
Gheysari, M., Loescher, H. W., Sadeghi, S. H., Mirlatifi, S. M., Zareian, M. J., & Hoogenboom, G. (2015). Water-yield relations and water use efficiency of maize under nitrogen fertigation for semiarid environments: experiment and synthesis. Advances in Agronomy, 130, 175e229.
Heermann, D.F., 1990. Center pivot design and evaluation. Proc. Third Nat. Irrigation Symp. Phoenix, Ariz, St Joseph, MI, ASAE.
Heermann, D.F., Hein, P.R., 1968. Performance characteristics of self-propped centre pivot sprinkler irrigation system. Trans. ASAE 11(1), 11±15. in a Mediterranean soil. agriculture  water management 8 5 ( 2 0 0 6 ) 2 4 3 – 2 5 2. irrigation. Trans. ASAE 12 (6), 790–794.
Hills, D., & Barragan, J., 1998. Application uniformity for fixed and J.N. Ortı´z a, J.A. de Juan b, J.M. Tarjuelo. Analysis of water application uniformity         from a center pivot irrigator and its effect on sugar beet (Beta vulgaris L.) yield
Hoekstra, A. Y., & Chapagain, A. K. (2007). Water footprints of nations: water use by people as a function of their consumption pattern. Water Resources Management, 21(1), 35e48.
Howell, T. A., Cuence, R. H. and Solomon, K. H. 1990. Crop yield response. In: Hoffman GJ., et al. (Eds.), Management of farm irrigation systems. ASAE, St. Joseph, MI; p. 312.
James, G.L., 1988. Principle of Farm Irrigation System Design. John Willey and Sons, Inc. New York, USA.
Keller, J., & Bliesner, R. D., 1990. Sprinkle and Trickle Irrigation. New York, USA: Van Nostrand 460 Reinhold. 652 pp.
Keller, J., Bliesner, R.D., 1990. Sprinkle and Trickle Irrigation. Van Nostrand Reinhold, New York, NY, USA.
Kincaid, D., Salomon, K., & Oliphant, J., 1996. Drop size distributions for irrigation sprinklers. Transactions of the ASAE, 39(3), 839–845.
Kincaid, D.C., 2001. The WEPP model applied to center pivot irrigation. Application rates and runoff in center pivot sprinkler irrigation. Abstracts of ASAE International Symposium on Soil Erosion Research for the 21st Century, Honolulu, HI, USA (Session 6).
Kincaid, D.C., Heermann, D.F., Kruse, E.G., 1969. Application rates and runoff in center-pivot sprinkler
Kincaid, D.C., Solomon, K.H., Oliphant, J.C., 1996. Drop size distributions for irrigation sprinklers. Trans. ASAE 39 (3), 839–845.
Klute, A., 1986. Methods of soil analysis part 1. Physical and Mineralogical Methods. 2nd Edition, Agronomy Monograph no. 9. Madison, Wisconsin.
Li, L. J., Zhang, L., Wang, H., Wang, J., Yang, J. W., Jiang, D. J., et al. (2007). Assessing the impact of climate variability and human activities on streamflow from the wuding river basin in China. Hydrological Processes, 21(5), 3485e3491.
Luiz,L.S., 2006. The effect of spray head sprinklers with different deflector plates on irrigation uniformity, runoff and sediment yield.
Luz, P.B., Fernandes, M.L., Gonc¸alves, M.C., 1998. Reliable estimate of runoff in center pivot irrigation: statistical approach. In: Proceedings of the 16e Congres Mondial de Science du Sol, Poster 2-658, ISSS, Montpellier, France, August 19–25, pp. 577–593.
Luz, P.B., Fernandes, M.L., Gonc¸alves, M.C., 1998. Reliable estimate of runoff in center pivot irrigation: statistical approach. In: Proceedings of the 16e Congres Mondial de Science du Sol, Poster 2-658, ISSS,Montpellier, France, August 19–25, pp. 577–593.
McLean, R., Sri Ranjan, R., & Klassen, G., 2001. Spray evaporation losses from sprinkler irrigation system. Canadian Agricultural Engineering, 42(1), 1.1–1.15.
McVicar, T. R., Niel, T. G. V., Li, L. T., Hutchinson, M. F., Mu, X. M., & Liu, Z. H. (2007). Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. Journal of Hydrology, 338(3e4), 196e220.
Merriam, J.L., Keller, J., 1978. Farm irrigation system evaluation: a guide for management: UTAH State University. Logan, UT, USA.
Merriam, J.L., Shearer, M.N., Burt, C.M., 1980. Evaluating irrigation systems and practices. In: Design and operation of farm irrigation systems, M.E Jensen ASAE monograph No. 3. pp. 721±760.
Montero, J., de Juan, J. A., Ortiz, J., & Tarjuelo, J. M. , 2003. Efecto de la altura del emisor sobre la distribucio´n de agua en equipos pivote y sobre el rendimiento de los cultivos. XXI Congreso Nacional de Riegos y Drenajes. Me´ rida, Madrid, Espan˜ a: Asociacio´n Espan˜ ola de Riegos y Drenajes.
Montero, J., Tarjuelo, J.M., Carrio´n, P., 2001. SIRIAS: a simulation model for sprinkler irrigation: II. Calibration and validation of the model. Irrig. Sci. 20 (2), 85–98.
Montero, J., Tarjuelo, J.M., Carrio´n, P., 2003. Sprinkler droplet size distribution measured with an optical spectro pluviometer. Irrig. Sci. 22 (2), 47–56.
Musick, J.T., Pringle, F.B., Walker, J.W., 1988. Sprinkler and furrow irrigation trends in the Texas High Plains. Appl. Eng. Agric. 4 (1), 46–52. on water application uniformity. Journal of Irrigation and
Playa´n, E., Garrido, S., Faci, J.M., Gala´n, A., 2004. Characterizing pivot sprinklers using and experimental irrigation machine. Agric. Water Manage. 70 (3), 177–193.
Rawls, W.J., Brakensiek, D.L., 1989. Estimation of soil water retention  and hydraulic properties. In: Morel-Seytoux, H.J. (Ed.), Unsaturated Flow in Hydrologic Modeling, Theory and Practice. Kluwer Academic Publishers, Dordrecht, pp. 275–300.
Rockstr€om, J., Falkenmark, M., Karlberg, L., Hoff, H., Rost, S., & Gerten, D. (2009). Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resources Research, 45(7).
 Sabah Almasraf, Jennifer Jury and Steve Miller, 2011. rotating spray plate sprinklers. Applied Engineering in Department of Bio systems and Agricultural Engineering Michigan State University.
Silva, W.L.C., James, L.G., 1988. Modelling evaporation and microclimate changes in sprinkle irrigation: II. Model assessment and applications. Trans. ASAE 31 (5), 1487–1493.
Skaggs, R.W., Miller, D.E., Brooks, R.H., 1983. Soil water. In: Jensen, M.E. (Ed.), Design, Operation on Farm Irrigation, Systems, No. 3. ASAE Monograph. St. Joseph, MI, USA, pp. 77–142.
Slack, D.C., 1980. Modeling infiltration under moving sprinkler irrigation systems. Trans. ASAE 23 (3), 596–600.
Solomon, K., Kincaid, D., & Bezdek, J., 1996. Drop size Spain: Ediciones Mundi Prensa.
Tarjuelo, J. M., 1999. El riego por aspersio´n y su tecnologı´a (2a Edicio´ n). Spain: Ediciones Mundi Prensa.
Tarjuelo, J. M., 1999. El riego por aspersio´n y su tecnologı´a (2a Edicio´ n).
Tarjuelo, J.M., Ortega, J.F., Montero, J., de Juan, J.A., 2000. Modelling evaporation and drift losses in irrigation with medium size impact sprinklers under semi-arid conditions. Agric. Water Manage. 43, 263–284.
Tarjuelo, J.M., Ortega, J.F., Montero, J., de Juan, J.A., 2000. Modelling evaporation and drift losses in irrigation with medium size impact sprinklers under semi-arid conditions. Agric. Water Manage. 43, 263–284.
Trimmer, W.L., 1987. Sprinkler evaporation loss equation. J. Irrig. Drain. Eng., ASCE 113 (4), 616–620.
Wilmes, G.J., Martin, D.L., Supalla, R.J., 1993. Decision support system for design of center pivots. Trans. ASAE.