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ABSTRACT
In Egypt, management of crops still away from what is being used today
by utilizing the advances of mechanical design capabilities, sensing and
electronics technology. These technologies have been introduced in many
places and recorded high accuracy in different field operations. So, an
autonomous agricultural robotic platform (ARP) based on machine vision
has been developed and constructed. The ARP consisted of two main
parts namely; 1) Power transmission and auto-guide system; and 2)
Robotic platform. The experiments were carried out at department of
agricultural engineering, faculty of agriculture, Kafrelsheikh University
during 2014-2015. In this study, the experiments were conducted in
laboratory to optimize the accuracy of ARP control using machine vision
in term of the autonomous navigation and performance of the robot’s
guidance system. For evaluation the image processing technique, four
different camera resolutions (1080%1920, 1944%x2592, 2736%3648, and
3240%4320 pixels) and three camera' heights (500, 700 and 1000 mm)
have been used to measure the execution time for image processing steps.
Flight time of spray droplets has been calculated under three levels of
spray height, (70, 100 and 130 mm), three levels of spray pressure (1, 3
and 5 bar) and three levels of nozzle size, (1.5, 3 and 5 mm). Also, the
effect of changing duty cycle percentage (DC, %) has been studied to
control the speed of the ARP with Pulse Width Modulation (PWM)
signals. Different nozzle tip sizes and spray pressures have been used to
trace the flow rate variation. Based on the total time consumed in the
execution time and droplets flight time, speed of the ARP has been noted

1 Professor, Agric. Eng., Dept., Faculty of Agric., Kafrelsheikh Univ.

2 Assistant Professor, Agric. Eng., Dept., Faculty of Agric., Kafrelsheikh Univ.
3 Head Researcher, Agric. Eng. Res. Inst., Dokki-Giza.

4 Engineer, Plant Protection Res. Inst. (PPRI), Dokki-Giza.

Misr J. Ag. Eng., October 2015 - 1421 -



FARM MACHINERY AND POWER

according to the resolution of camera and its height levels. Results
showed that the robotic platform’ guidance system with machine vision
was able to adequately distinguish the path, resist image noise and give
less lateral offset error than the human operators. The average lateral
error of autonomous was 2.75, 19.33, 21.22, 34.18 and16.69 mm, while
the average lateral error of human operator was 32.70, 4.85, 7.85, 38.35
and 14.75 mm for straight path, curved path, sine wave path, offset
discontinuity, and angle discontinuity respectively. The best execution
time of image processing was obtained with the minimum values of the
camera resolution at 500 mm camera height. While, increasing the size of
nozzle at same height and spray pressure decreased the flight time. The
favorable robotic platform' speeds were obtained at lower values of
camera resolutions and wider distances between nozzle and camera.

Keywords: Autonomous robotic, machine vision, image processing,

Hough transform.

INTRODUCTION

achine vision is the technology to replace or complement

manual inspections and measurements with digital cameras

and image processing. Machine vision had emerged with the
high effectiveness and success in the development of agriculture and
industrial areas. Machine vision works basically in four steps: 1) imaging,
2) processing and analysis, 3) communication and 4) action. The
applications of machine vision can be classified according to the
industries i.e. automotive, electronics, food, logistics, manufacturing,
robotics, packaging, pharmaceutical, steel & mining and wood industry
(Patel et al. 2013). A typical machine vision system executes the
following processes in the specified order: image capture and
enhancement, segmentation, feature extraction, matching features to
models, exploitation of constraints and image cues to recover information
lost during image processing, and application of domain knowledge to
recognize objects in the scene and their attributes (Forsyth and Ponce,
2003). Three main groups of field operations for an autonomous
technology were identified: crop establishment, plant care and selective
harvesting. To perform these tasks, a designed system must fulfill some
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requirements e.g. light weight, small autonomous machines,
computational and energetic autonomy, machine intelligence, external
behavior, communication, weather, vehicle system architecture, graceful
degradation, self-awareness, management, economics and mechanization
tasks (Blackmore et al. 2007). The need for such systems is driven by
increasing financial cost on farmers combined with public concern about
the environment and working conditions. Efficient deployment of
autonomous robotic platforms in the field will allow to care and
management of crops in a very different way from what is known today
(Blasco et al., 2002; Cho et al., 2002). Robotic platforms and
implements may sense and manipulate the crop and its environment in a
precise manner with minimal amount of materials and energy making
them potentially more efficient than traditional machinery. Image
acquisition procedure and image segmentation are critical steps in
morphology-based weed and plant identification systems, because high-
quality images provide important leaf shape information for the feature
extraction and plant classification procedures (Meyer and Neto, 2008).
Hough transform has been used effectively in many studies for straight
line recognition of crop or tree rows using vision or/and laser scanner as
navigation sensor (Ayala et al., 2008; Barawid et al. 2007; Gao et al.
2010; Hamner et al. 2010 and Torres-Sospedra and Nebot, 2011). Ji
and Qi (2011) reported that Hough transform is slow due to the huge
computation, they proposed a randomized Hough transform to reduce
computational time. Some modifications have been proposed to improve
the Hough transformation which is applied only to those points which are
edge points along the crops. But this requires the application of
techniques for edge extraction. Astrand and Baerveldt (2005) used a
method for robust recognition of plant rows based on the Hough
transform that is able to guide agricultural machines. The novelty of their
algorithm was that they modeled a plant row with a rectangular box
instead of a line. So, the main objectives of the present study are to
developed ARP for plant identification and distinguish it from weeds with
measuring the performance of the robot’s guidance, and to evaluate the
system under different variables for inter-row autonomous navigation.
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MATERIALS AND METHODS

1. Experiments and robotic platform components

Manufacturing of the ARP and the experiments were conducted at
Department of Agricultural Engineering, Faculty of Agriculture,
Kafrelsheikh University during 2014 and 2015. The ARP consisted of two
main parts namely; 1) Power transmission and auto-guide system; and 2)
Robotic platform. The main specifications of the ARP are summarized in
Table 1, while the main components of the ARP were illustrated in
Figures 1 and 2. Experiments were conducted to optimize the accuracy of
ARP control using machine vision in term of the autonomous navigation
and performance of the robot’s guidance system. Where, five different
row situations (paths); straight path; sin wave path; offset discontinuity
path; angel discontinuity path; and curved path have been used in tests.
For evaluation the image processing technique, four different camera
resolutions (1080x1920, 1944x2592, 2736x3648, and 3240%x4320 pixels)
and three camera' heights (500, 700 and 1000 mm) have been used to
measure the execution time for image processing steps. Flight time of
spray droplets has been calculated under three levels of spray height, (70,
100 and 130 mm), three levels of spray pressure (1, 3 and 5 bar) and three
levels of nozzle size, (1.5, 3 and 5 mm). Also, the effect of changing duty
cycle percentage (DC, %) has been studied to control the speed of the
ARP with Pulse Width Modulation (PWM) signals. Different nozzle tip
sizes and spray pressures have been used to trace the flow rate variation.
Based on the total time consumed in the execution time and droplets
flight time, speed of the ARP has been noted according to the resolution
of camera and its height levels.

2. Machine vision

The Arduino C and Roboreleam programs were used for ARP control and
algorithm development. Machine vision operation can be described by
four-steps: 1) imaging: take an image, 2) image processing: image
processing to obtain a result, 3) communication: send the result to the
system in control of the process, 4) action: take action depending on the
vision system’s results (SICK IVVP, 2006) as shown in Figure 3.
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Figure 1: Main components of ARP

2.1 Image processing techniques (algorithms)

Hundred images were captured in location of the experiment before
image processing step. A computer Pentium Dual-core, 220 GHz and
ROBORELEAM version 2.67.10 was used for image processing to
develop algorithm. The images were decomposed to red, green and blue
layers. The green channel was used for segmentation because the images
contained robe of green color. The image processing steps are shown in
Figure 4 and described in more detail in this section. The image histogram
was calculated, and a threshold was chosen manually based on the image
histogram, choosing the value that separates two curves, where one
represented the green robe pixels and the other one represented the
background pixels. A binary image was produced based on the histogram
threshold. This histogram provides us with a view of the images
depending on where the view histogram is inserted into the processing
step. A histogram is a graphical display of the number of pixels at that
intensity (the Y or vertical axis) with the pixel value or the green color
intensity (the X or horizontal axis 0-255).
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Figure 2: Schematic drawing of the ARP
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Table 1: Specification of ARP

FARM MACHINERY AND POWER

specifications

Overall length  (mm) 1250
Overall width (mm) 860
Overall height  (mm) 1177
Ground clearance (mm) 560
Power sup. | batteries capacity 12V, 70A/h
Two DC Voltage 12V
brushed Revolutions 4000 rpm
motors Max. output 150 watt
Single MegaMoto H-
tprgvxgrrnission Two circuits Type and model bridge mode
for two rear applied input Pulse-width modulation
wheels PWM frequency | DC — 20kHz
Voltage Range 6V —24V (28V ab. max)
Two gear box | Velocity ratio 76.40 rpm
Voltage 12V
3(gt(t))rr:shed Current_ 20 A
Revolutions 1500 rpm
Type and model acme thread
Auto-guide POWEr SCrew Screw length 240 mm
system diameter 10 mm
The nut length 50mm
Magnetic 30A at 12VDC
relay
Micro switch | Voltage 12vDC
Software Robo_releam Vers!on 2.67.10
Arduino C Version 1.0.3
Microcontroller ATmega328
Robotic Operating Voltage S\
platform . . 14 (of which 6 provide
Digital 1/0 Pins PWM output)
32 KB (ATmega328) of
Flash Memory which 0.5 KB used by
bootloader
Camera Sony Handycam !—IDR-
) CX580V, 20.4 pixels
Robotic CPU Pen. Dual-core 220GHz
platform Computer Memory 4GB DDR3
Storage 250GB
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Figure 3: Stages of machine vision operation
Using a histogram images, we can quickly see luminance and the pixel
(RGB) color distribution for green robe as shown in Figure 5. Original
image is shown in Figure 6 (A). Depending on the green color, RGB filter
will diminish all pixels that are not of green color. The following function
will diminish white pixels even though they may contain the green color
according to the following order of the program:

G=[[G-B] +[G-R]],R=0,B=0

G is then normalized with respect to the maximum green value, B and R
is blue and red color value. Based on the above formula it can be seen that
white pixels result in a zero value whereas pure primary colors (G=255,
R=0, B=0) G doubles its value. Threshold value of color allows us to
specify a minimum value below which pixels are considered to be black
and will be ignored when calculating the image results, it’s important to
distinguish the soil from plants and weeds by ignorance of the soil
information from image Figure 6 (B).

The border module extracts the outline or border of a binary black and
white image. The background is assumed to be black whereas the
foreground image (robe) is non-black pixels. Note that the extracted
border is the border within the image Figure 6 (C). Detection module will
recolorize plant border with the green color. This module is useful for
inspection or illustration of detected plant that can then be colored into an
obvious color to be overlayed with the original image (robe green) as
shown Figure 6 (D).
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Figure 5: The pixel color distribution of RGB color

2.2 Hough transform module

The Hough Transform application is typically used as a line detection
method through mathematical transformation. The Hough transform is a
technique for creating lines based on points. The Hough transform takes
as input many points and will generate guesses for what lines those points
represent. The task of detecting lines now instead becomes a task of
detecting peaks within this image (Figure 7 (1-A) and (2-A)). Figure 7
illustrate steps of rows detection using Hough transform.

3. Accuracy of ARP control using machine vision.

3.1 Performance measures of the robot’s guidance system

Several different tests were set up to simulate the conditions the vehicle
might encounter during its autonomous operation. Five testing situations
[a straight line 40 m with no curves, a 40 m curve of 5 m separating the
highest point in the curve (peak from the original straight line), a 40 m
sine wave of amplitude 5 m and period 25 m, a 20 m straight line offset
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discontinuity, and a 20 m straight line angle discontinuity (120°)] as
shown in Figure 8 and according to Spencer (2004).

© (D)

Figure 6: Stages of image processing for robe recognition

1-(A) Hough accumulator space 1-(B) Detection of rows

2-(A) Hough accumulator space 2-(B) Detect:iin of rows
Figure 7: Detection of rows using Hough transform msthod
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Figure 8: Illustration of the five different test situations

Four autonomous test repetitions were run for each test situation to
provide statistically valid results compared to one human operator trial.
Liquid tank was used with a spout (method of regulating the flow of water
from the tank). Just prior to a test, the water would be allowed to drip
steadily from the tank at a rate that would provide a near-continuous
record of the robot location Figures 9 and 10. The spout was placed
directly between the rear wheels at the center of rotation of the vehicle to
gather the best possible measurement of the location. During autonomous
operation the water would drip along the path taken by the vehicle. When
the trial was complete, the data collector was able to read measurements
from the green robe to the water droplets line by a ruler at each of the 1 m
markings along length of the test path. In Figure 11, the flowchart of auto-
guide system for ARP is presented:

3.2 Inter-row autonomous navigation and response time for plant
identification
The lateral offset error is represented in three different ways to describe
the performance of the system. The average lateral error, maximum
lateral error, and standard deviation of the error are reported. The average
lateral error is an indicator of the overall error of the system, the
maximum lateral error indicates the largest error that occurred, which is
important to consider since certain applications would only allow a
certain amount of error. The standard deviation indicates the variability of
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the motion of the agricultural robot. The standard deviation ( & ) was
expressed according to ASAE standard (1998), as below:

Where: & is the standard deviation, x; represents each value in the line, X
is the mean of the value, and n is number of measurements.

Figure 9: Dripping along green straight line

Figure 10: Straight line test of ARP
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Figure 11: Flowchart for auto-guide system
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3.2.1 The flight time of a spray droplet

Exit velocity using accelerometer used to get the flight time of a spray
droplet for a pre-measured distance (Figure 12). A valve was positioned
above an accelerometer, model (ACH-01, Pennwalt crop., Kynar piezo
Film Dept., Vallery Forge, PA.) at a height 70, 100, 130 mm. when a
spray droplet hit the accelerometer, the output signal was amplified by
model (IB-ACHO01-01, Pennwalt crop., Vallery Forge, PA) and displayed
on one channel of an oscilloscope model (TEKTRONIX K213). Then, the
flight time from valve opening to the time the droplet hit the
accelerometer was read from the oscilloscope. The flight time
measurement was carried out under the study parameters at different
levels of pressure 1, 3 and 5 bar and nozzle size 1.5, 3.0 and 5 mm,
according to lee (1998).

PRESSURIZED
WATER ——— OSCILLOSCOPE

VOLTAGE

- CH. 1

|
|
I
1
| TIME
i
VOLTAGE |
I
|

]
)
h CH.2 ! |
t ]
N o :
‘*U UY *" TIME
ACCELEROMETER VALVE VALVE
OPEN CLOSE
DROPLET HITS
ACCELEROMETER

Figure 12: A schematic for measuring an exit velocity of spray droplet
3.2.2 Total response time

The total response time (Trs) can be defined as the sum of the individual
periods of time elapsing during each step of the online application
process. In our case there are only two time components, the first
component is acquisition time (Ta) which is the time required for the
detection and recognition of the bean plant. The second component of
total response time (Trs) is the response time of the injection metering
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system (Tr) which is the time required for the injection spray nozzle
according to Hloben (2007).

TRS = TA + TR

3.2.3 Calculation of forward speed for the ARP

There is a constant distance (Is) between the camera and the nozzles
(spray boom). This distance is divided by the forward speed of the
machine to give total response time. The relation between these variables
described by Hloben (2007), where:

T <ls
RS—U

Where, Trs s total response time of the application system in s, Is is
distance between center of camera and nozzle tip in m, and U is the
forward speed, m s

3.3 PWM signal control on DC motor of rear wheel

Pulse Width Modulation (PWM) signals were used to control speed of the
ARP making possible changing of voltage at frequency 500Hz. The PWM
duty cycle was defined as on/off (%) in one period. Changing the duty
cycle of the PWM signals controlled the open time of DC motor, and thus
altered its speed and voltage.

The process in which the switch cycle (T) is unchanged and the switch
turn-on time (ton), Which is adjusted, is called Pulse-Width Modulation
(PWM), where tof is the turn-off time of the output voltage (Figure 13)
(Wang and Huang, 2000).

Conduction duty cycle (d) can be calculated using below equation:
Ton
T
The average output voltage, Vo cab be calculated as described by Obed
and Basheer (2011) and as below equation

d=

Ton
Vo = T = dVdC

Where, Vg is the supply voltage.
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Figure 13: PWM pulses of DC motor

RESULTS AND DISCUSSION
1. Accuracy of ARP control using machine vision
1.1 Autonomous navigation
An autonomous ARP was developed and tested to assess the performance
of the system. Data was collected for five different row situations with
four autonomous trials and one human trial. The results assess the
performance of the system in two ways: How well the vehicle follows the
identified line, and how well the machine vision system identifies the line.
1.1.1 Performance measures of the robot’s guidance system.
Since +/- two standard deviations from the mean represents 95% of the
data in a set, the standard deviation in this case can be thought of as, “the
vehicle was within this distance of the average lateral error 95% of the
time.” Even though successful line following implies successful row
identification.
1.1.1.1 The straight line situation
Table 2 showed that the overall maximum lateral error of autonomous for
the straight test situation was 84.75 mm, the average lateral error was 2.75
mm, and the standard deviation was 45.56 mm. It should be noted that the
average lateral error was near zero, though it simply indicates that in
straight line following there is no constant error in the system, or the
system does not favor one direction over another. In each of the
individual straight line trials the average lateral error was near zero,
though not zero. The largest errors tended to occur in the first 20 meters
of the trials. The standard deviation of the human operator was 34.07 mm,
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the average lateral error was 32.70 mm and maximum lateral error was
85.00 mm, concerning the maximum lateral error, the autonomous control
did slightly better than human operator by 0.25 mm. Figure 14 indicated
that the largest errors tended to occur in the first 20 m in trail 2, while the
largest error in human operator was slightly better than the autonomous
control. These results are in the same line with those found by Xue et al.,
(2012) and Kiani and Jafari (2012) also in a great harmony with those
reported by spencer (2004).

Table 2: Statistical summary for comparison human performance to
autonomous control for different test situations.

Average Maximum Standard
Test Situation Control Lateral Lateral Deviation,
error, mm error, mm mm
) Autonomous 2.75 84.75 45.56
Straight Path
Human 32.70 85.00 34.07
Autonomous 19.33 106.00 63.30
Curved Path
Human 4.85 77.00 51.72
] Autonomous 21.22 148.50 93.20
Sine Wave Path
Human 7.85 128.00 64.37
Offset Autonomous 34.18 120.50 64.50
Discontinuity Human 38.35 90.00 57.40
Angle Autonomous 16.69 94.25 59.35
Discontinuity Human 14.75 70.00 47.86

1.1.1.2 The curved line situation

Lateral error is continuously being introduced to the system due to the
constant radius of the curve. The overall maximum lateral error of
autonomous control for the curved line test situation was 106.00 mm, the
average lateral error was 19.33 mm, and the standard deviation was 63.30
mm. Both the maximum lateral error and the standard deviation of curved
tests were higher than the straight line test situation. The maximum lateral
error of autonomous control was increased by 21.25 mm and was higher
than the human operator performance by 29.00 mm in curved line test
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situation. Due to the curved path, Figure 15 does not allow us to observe
many notable features beyond the oscillation of the vehicle. It can be
noted that a given trial tends to error on one side more than the other in
the curved trials, when this was not the case in the straight trials (Figure
15). In autonomous control, the maximum lateral error and average lateral
error were 106.00 and 19.30 mm where they were 77.00 and 4.85 mm
respectively in human operator, the standard deviation in autonomous
control was slightly higher than the human operator by 11.58 mm. The
results are in agreement with those obtained by Subramanian (2005) and
spencer (2004).

1.1.1.3 Sine wave test

In this case the radius of the curves was changing in value and direction.
This is an atypical operation and a task that is more demanding on the
system than the straight line or curved test, but a good test of the system’s
robustness. The overall maximum lateral error for the sine wave test
situation was 148.5 mm in autonomous control where it was 128.00 mm
in human operator, the average lateral error was 21.22 mm, and 7.85 mm
for autonomous control and human operator respectively, and the
standard deviation was 93.20 mm while it was 64.40 mm in the human
operator. The test statistics indicate significantly less accurate
performance on the more difficult test situation. Large errors approaching
150 mm would be undesirable, they are unacceptable in certain
applications as spray precision. Though the autonomous performance was
not as good as other test situation, the human operator performance
indicates the difficulty of the course. The human operator performed
slightly better than the autonomous control, but overall there were no
significant differences between the two cases as confirmed by Spencer
(2004).

1.1.1.4 The line offset discontinuity

Line offset discontinuity consisted of a step function introduced in the
line path at the 11 meter point into the run .The overall maximum lateral
error for line offset discontinuity test situation was 120.50 mm, the
average lateral error was 34.18 mm, and the standard deviation was 64.50
mm in the autonomous control (Table 2).
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1.1.1.5 The angle discontinuity test

A ramp function was introduced into the test path. In this situation, the
overall maximum lateral error was 94.25 mm, the average lateral error
was 16.69 mm, and the standard deviation was 59.35 mm. regarding
human operator, the maximum lateral error was 70 mm, average lateral
error was 14.75 mm and standard deviation was 47.86 mm. The
performance here was similar to that of the offset discontinuity with
normal operation seen leading up to the angle of the path established at 11
m in to the trial (Table 2). The important observation to make from the
final two discontinuity situations was the fact that the system was able to
control the disturbance, and continue along the path. Repeated
discontinuities could cause problems, but the system was not easily lost
by a single expected change in its path, same results were obtained by
Spencer (2004).

1.2 Evaluation the image processing technique
1.21 Effect of resolution and height of the camera on image
processing time

Image processing time (execution time) is critical and important to
determine the speed of ARP, the total time for execution has been noted
and recorded under four different camera resolutions (1080%1920,
1944x2592, 2736%3648, and 3240x4320 pixels) and three camera’ heights
(500, 700 and 1000 mm). However, tota execution time can not be
recorded as one time, but, it includes many times specified to different
steps, an example for different steps and their times which are included in
the execution process for using camera resolution of 3240x4320 pixel and
camera height 1m are presented in Table 3. Data showed that with
3240x4320 pixels as camera resolution, the highest vaue for the
execution time was 2.143 s when camera used at 1000 mm height.
Greatly, the values of execution time can be in a descending order under
al resolutions of 4320%3240, 3648x2736, 2592x1944 and 1920%1080
pixels for camera height of 1000,700 and 500 mm. It could be concluded
that the best execution time of image processing was obtained at the
minimum values of the camera resolution at 500 mm camera height
(Figure 16)
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Figure 14: Measured and estimated deviation from the straight path
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Figure 15: Measured and estimated deviation from the curved line situation
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Table 3: Execution time and its components for image processing steps at
resolution 4320%3240 pixels and camera height 1m.

. .. Percent of Total time,
Image processing steps Execution time, s %
Prepare image acquisition 0.02 0.93
Smooth images prior 0.466 21.75
The RGB Filter 0.219 10.22
Threshold value of color 0.614 28.65
Threshold value (size) 0.358 16.71
Border module extracts 0.099 4.62
Detection module 0.026 1.21
Hough transform module 0.104 4.85
Module for source current 0.197 9.19
Serial communication 0.02 0.93
Display variable 0.01 0.47
Visual Basic scripts 0.01 0.47
module
Total 2.143 100%
2.50
I Camera height at 21000 mm — Camera height at 700 mm

qm; 2.00 +—

£

gio =
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o ——

2 1.00 +[liN=0.——
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1944%2592

1080x1920

Figure 16: Total execution time for image processing steps at

different resolution and height of camera.
1.2.2 Factors affecting the flight time of spray droplet

Data presented in Figure 17 clearly illustrate the effect of spray height,
spray pressure and nozzle size on the flight time of spray droplet from the
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nozzle till plant surface. It was clear that increasing spraying height
increase the flight time, where it increased from 12.24 to 16.78 ms and
from 16.78 to 21.1 ms when the spraying height increased from 70 to 100
mm and from 100 to 130 mm respectively at 1 bar spraying pressure and
1.5 mm nozzle size. Same trend obtained for 3 and bar of spraying
pressure.

Increasing the size of nozzle at same height and pressure increased the
volume and speed of droplet toward plant surface and accordingly flight
time decreased, the data showed that increasing the nozzle size from 1.5
to 3 mm and from 3 to 5 mm decreased the flight time by 14 and 9.2 %
respectively at 70 mm spraying height. Same trend obtained for the two
other spraying heights.

= at 1 bar spray pressure  » at 3 bar spray pressure i at 5 bar spray pressure

25
20
g
o 15
£
- 10
e =/
2 5
g =
0 =
70 mm {100 mm 130 mm| 70 mm {100 mm|130 mm| 70 mm {100 mm|130 mm
hieght | hieght | hieght | hieght | hieght | hieght | hieght | hieght | hieght
15 3 5 |

Nozzle size, mm

Figure 17: Effect of spray height and nozzle size on the flight time of
spray droplet at different spray pressure.

1.2.3 Effect of duty cycle percentage (DC %) and frequencies on some
performance characteristic of the ARP

Pulse Width Modulation (PWM) signals were used to control speed of the

ARP making possible changing of voltage at frequency 500Hz. The PWM

duty cycle was defined as on/off (%) in one period. Changing the duty

cycle of the PWM signals controlled the open time of DC motor, and thus
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altered its speed and voltage. Data in Table 4 and indicated that the duty
cycle greatly affected measured.

Table 4: Effect of duty cycle percentage (DC, %) and frequencies on
calculated voltage, measured voltage, speed motor (RPM) and

velocity mv.
Duty Calculated | Measured Speed velocity | velocity
cycle, % | voltage, v | voltage, v motor ns kmh
(RPM)
10.00 1.20 2.80 436.22 0.18 0.64
20.00 2.40 3.20 865.06 0.35 1.28
30.00 3.60 4.30 1316.08 0.54 1.94
40.00 4.80 6.20 174491 0.72 2.57
50.00 6.00 7.70 214417 0.88 3.16
60.00 7.20 9.10 2550.83 1.05 3.76
70.00 8.40 10.00 2942.69 1.21 4.34
80.00 9.60 10.60 3304.99 1.35 4.88
90.00 10.80 11.70 3600.73 1.48 5.31
100.00 12.00 12.00 4000.00 1.64 5.90

1.2.4 Effect of spray pressure and nozzle tip size on the spray flow
rate of the ARP

From results, it was clear that increase both spray pressure and nozzle tip
size tended to increase the average flow rate under study. The increment
percentages in average flow rate due to increasing spray pressure from 1
to 3 bar, and from 3 to 5 bar, were 42.69 and 21.63 % respectively when
using nozzle tip size of 5 mm. While it increased by 53.92 and 27.61%
respectively by using nozzle size of 3 mm. The corresponding values
when using nozzle size .5 mm were 43.39 and 22.92 %, respectively. It
could be concluded that the increment rate in flow rate was decreased by
increasing spray pressure as shown Figure 18.

Also, increasing the size of nozzle from 1.5 to 3 to 5 mm gave an
increment percentage in average flow rates. The increment percentages in
sprayer flow rate were 32.68, 45.20 and 48.54 % due to increase the
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nozzle size from 1.5 to 3 mm under 1, 3 and 4.5 bar of spray pressure
respectively. However, the increase percentages were 55.96, 45.23 and
40.70 % by increasing the nozzle size from 3 to 5 under 1, 3 and 4.5 bar
of spray pressure respectively.

m1 bar- 1.5mm =3 bar- 1.5mm = 5 bar- 1.5mm
@1 bar- 3mm # 3 bar- 3mm = 5 bar- 3mm
1 bar- 5mm « 3 bar- 5mm m 5 bar- 5mm

S 3000.00

2500.00

2000.00

1500.00

1000.00

500.00

Average flow rate, ml/m

0.00

Spray pressure, nozzle size

Figure 18: Effect of spray pressure and nozzle size on the average nozzle flow
rate, ml/min.
1.2.5 Effect of camera resolution, camera height and distance between
nozzle and camera on the speed of the ARP.

Results showed that the maximum obtained value of ARP speed was
found to be 7.10 km/h at the resolution of camera 1080%1920 pixel,
camera height of 700 mm and 1000 mm distances between nozzle and
camera. While the minimum speed value was 0.40 km/h at resolution of
camera 3240x4320 pixel under distances between nozzle and camera of
250 mm and camera height of 100+ mm. It could be concluded that the
favorable robotic platform' speeds were obtained at the lower values of
camera resolutions and wider distances between nozzle and camera
(Table 5).
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Table 5: Effect of camera resolution, camera height and distance
between nozzle and camera on the ARP speed.

Camera height, Distance between nozzle and camera, mm
Camera mm 250 | 500 | 750 | 1000
accuracy, pixel
ARP speed. km/h

1000 0.40 0.79 1.19 1.58

3240x4320 700 0.50 0.99 1.49 1.98
500 0.54 1.07 1.61 2.15

1000 0.60 1.20 1.80 2.39

2736x3648 700 0.69 1.38 2.07 2.76
500 0.68 1.37 2.05 2.38

1000 0.94 1.88 2.82 3.77

1944%2592 700 1.05 2.10 3.15 4.20
500 0.97 1.93 2.90 3.51

1000 1.73 3.47 5.20 6.93

1080%1920 700 1.78 3.55 5.33 7.10
500 151 3.01 4,52 5.67

CONCLUSION

An autonomous robotic platform based on machine vision has been
developed and constructed to be implemented in Egyptian conditions as
self-propelled mobile vehicle for carrying tools for inter/intra-row crop
management based on different control modules. The results showed that
performance of the entire autonomous system along a line indicates the
machine vision proficiency in determining the location of that line. In
each situation (path), the machine vision system was able to adequately
distinguish the path and resist image noise. Image processing time mainly
depends on resolution height of the used camera; however, using low
resolution in processed images is favorable to reduce the execution time.
Also, closed distances for camera over the objects (plants) are not
recommended. Spray height, spray pressure and nozzle size are affecting
the flight time of spray droplet from the nozzle till plant surface, where ,
bigger nozzle tip size, higher pressure and lower distances were better
variables in this study. Duty cycle percentage, camera resolution, camera
height and distance between nozzle and camera are critical and important
variables to determine the speed of ARP.
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