IMPROVING BIOGAS PRODUCTION FROM ORGANIC AND AGRICULTURAL WASTES USING WASTEWATER AND STARTER SLURRY

Document Type : Original Article

Author

Lecturer of Agric. Eng., Fac. of Agric., Zagazig Univ., Egypt.

Abstract

Anaerobic digestion is a well-known technique for waste management which could have constituted health hazard as well as environmental pollution. To enhance the biogas production, Starter Digestate (SD) by 5% of digester volume (T2) and Agricultural Wastewater (AW) with SD (T3) were performed on raw materials of: Cattle Dung (CD), Poultry Droppings (PD), Sugar beet Leaves (SL) and Water Hyacinth (WH) compared with blank test (T1) (Tap water) under different fermentation mixtures in order to study their effects on biogas and methane production, total nitrogen and pH.
Results indicated that using agricultural wastewater and starter digestate 5% (T3) acheived the highest biogas production, methane percentage and total nitrogen comparing with the other treatments. With respect to fermentation mixtures, mixture of 50% SL + 50% WH (B) gave the highest methane percentage (77%), while mixture of 50% PD + 25 % SL +   25% WH (D) produced high concentration of N (5.3%) as a rich fertilizer with an average biogas production (778 mL/day) through fermentation period of 24 days.

Keywords

Main Subjects


Abdelhamid, A. M. and A. A. Gabr (1991). Evaluation of water hyacinth as feed for ruminants, Archives of Animal Nutrition, 41, 754 – 756.
Adelekan, B. A. and A. I. Bamgboye (2009). Comparison of biogas productivity of cassava peals mixed in selected ratios with major livestock waste types, Afr. J. Agric. Res., 4(7), 571 – 577.
Deublein, D. and A. Steinhauser (2008). Biogas from Waste and Renewable Resources, Wiley Online Library: Weinheim, Germany.
Eltawil, M. A. and E. B. A. Belal (2009). Evaluation and scrubbing of biogas generation from agricultural wastes and water hyacinth, Misr J. Ag. Eng., 26(1), 534 – 560.
Faure, D. and A. M. Deschamps (1990). Physicochemical and microbiological aspects in composting of grape pulps, Biol. Wastes, 34, 251 – 258.
Gamma’a, A. O; A. H. El-Tinay and F. M. El-Yamen (2006). Biogas Production from Agricultural Wastes, Journal of Food Technology, 4(1), 37 – 39.
Gelegenis, M. J; D. Georgakakis, I. Angelidaki and V. Mavris (2007). Optimization of biogas production by co-digestion whey with diluted poultry manure, Renewable Energy, 32, 2147 – 2160.
Gissén, C; T. Prade, E. Kreuger, I. A Nges, H. Rosenqvist, S. E. Svensson, M. Lantz, J. E. Mattsson, P. Börjesson and L. Björnsson (2014). Comparing energy crops for biogas production – yields, energy input and costs in cultivation using digestate and mineral fertilization, Biomass and Bioenergy, 64, 199 – 210.
GTZ, G. (1999). Biogas Digest (Volume I. Biogas Basics) GTZ-GATE. Eschborn, Germany, http://www2.gtz.de/dokumente/bib/04-5364.
Hons F. M; J. T. Cothren, J. C. Vincent and N. L. Erickson (1993). Land application of sludge generated by the anaerobic fermentation of biomass to methane. Biomass and Bioenergy; 5 (3–4), 289 – 300.
Hussein, A. M. (1992). Industrial utilization of water hyacinth as compared to mechanical control. Proceedings of the National Symposium on Water hyacinth, Assiut University, Egypt.
Igoni A. H; M. F. N. Abowei, M. J. Ayotamuno and C. L. Eze (2008). Effects of total solids concentration of municipal solid waste on the biogas produced in an anaerobic continuous digester, Agricultural Engineering International: the CIGR E, Journal, Manuscript 07 010, 1 – 11.
Ituen E. E; M. M. John and B. E. Bassey (2007). Biogas Production from Organic Waste in Akwa Ibom State of Nigeria, Appropriate Technologies for Environmental Protection in the Developing World, July 17 – 19.
Jagadish, H. P; M. A. Raj, P. L. Muralidhara, S. M. Desai and G. K. Mahadeva Raju (2012). Kinetics of Anaerobic Digestion of Water Hyacinth Using Poultry Litter as Inoculum. International Journal of Environmental Science and Development, 3(2), 94 – 98.
Kadam, P. C. and D. R. Boone (1996). Influence of pH on ammonia accumulation and toxicity in halophilic, methyltrophic methanogens, Applied Environmental Microbiology, 62, 4486 – 4492.
Konstandt, H. G. (1976). Engineering’s operation and economics of methane gas production. Seminar on Microbial Energy Conversion, Gottingen, Erich Goetze Verlag, Germany.
Köttner, M. (2003). Integration of biogas technology, organic farming and energy crops. The future of biogas in Europe II, European biogas workshop. October 2nd to 4th, University of Southern Denmark esbjerg / Denmark.
Lehtomaki, A; S. Huttunen and J. A. Rintala (2007). Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: Effect of crop to manure ratio. Resources, Conservation and Recycling, 51, 591 – 609.
Lo, K. V; W. M. Carson and K. Jeffers (1981). A computer aided design for biogas production from animal manure. Livestock Wastes. A Renewable Resource, p: 133 – 135.
Mahnert, P; K. D. Biogasproduktion, N. Rohstoffen und Gulle (2005). Ph.D. Dissertation. Landwirtschaftlich-Gartnerischen Fakultat der Humboldt- Universitat, Berlin.
Mark, A. M.  and A. L. Ken (2006). Florida Crop/Pest Management Profile; Aquatic Weed, http://www.edis.ifas.ufl.edu).
Nges, I. A; F. Escobar, X. Fu and L. Björnsson (2012). Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production, Waste Management, 32(1), 53 – 39.
Nuhu M; M. M. Mujahid, A. H. Aminu, A. J. Abbas, D. Babangida, D. Y. Tsunatu, Y. Z. Aminu, Y. Mustapha, I. Ahmed and I. E. Onukak (2013). Optimum Design Parameter Determination of Biogas Digester using Human Faeces Feedstock, Journal of Chemical Engineering and Materials Science (JCEMS); Academic Journals, 4(4), 46 – 49.
Okeke, C. E. and V. A. Ezekoye (2006). Design, construction and performance evaluation of plastic biodigester, The Pacific Jo. Sc. Tec. 7(2), Nsukka, Nigeria.
Parawira W; M. Murto, R. Zvauya and B. Mattiasson (2004). Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves, Renewable Energy, 29 (11), 1811 – 1823.
Recebli, Z; S. Selimli, M. Ozkaymak and O. Gonc (2015). Biogas production from animal manure, Journal of Engineering Science and Technology, 10(6), 722 – 729.
Rojas, C; S. Fang, F. Uhlenhut, A. Borchert, I. Stein and M. Schlaak (2010). Stirring and biomass starter influences the anaerobic digestion of different substrates for biogas production, Eng. Life Sci., 10(4), 339 – 347.
Widyastuti, F. R; Purwanto and Hadiyanto (2013). Biogas potential from the treatment of solid waste of dairy cattle: case study at Bangka botanical garden Pangkalpinang, International Journal of Waste Resources, 3(2), 1 – 4.
Yavini, T. D; A. I. Chia and A. John (2014). Evaluation of the Effect of Total Solids Concentration on Biogas Yields of Agricultural Wastes, International Research Journal of Environment Sciences, 3(2), 70 – 75.