KINETICS OF BIOLOGICAL TREATMENT OF PESTICIDE WASTEWATER

Document Type : Original Article

Author

Assist. Prof., Ag. Eng. Dept., Fac. of Ag., Cairo Univ., Egypt.

Abstract

Pesticides are chemical substances intended to protect food crops and livestock from pests in order to promote agricultural productivity and protect public health. Contamination of soil, air and water and threat to human and animal health are the major constraints in the use of pesticides. Treatment of pesticide contaminated water is, therefore, paramount. Biological treatment provides the most economical option when compared with other treatment methods. The aim of the study was to develop a safe and effective farm biological treatment for low level agricultural pesticide wastewater. In this study, the degradation of the fungicide captan was evaluated under batch and continuous modes of operation with a retention time of 15 days. The results showed that the initial cell number (30.1 ´ 106 cells/mL) in the soil water mixture first declined with time during the first 24 hours reaching 15.6 ´ 106 and 11.1 ´ 106 cells/mL in the batch and continuous bioreactors, respectively. This was due to the inhibitory effect of pesticide on some of the soil microbial species that had less tolerance to captan at the initial concentration of 144 mg/L. Then, the microbial population started growing, reaching its maximum after 5 and 12 days in the batch and continuous bioreactors, respectively. The lag period and the specific growth rate for the batch bioreactor were 22 h and 0.096 h-1, respectively. A captan degradation efficiency of 89.6% was achieved after 10 days in the continuous bioreactor compared to a degradation efficiency of 100% after 5 days in the batch bioreactor. This study showed that the effluent from the continuous bioreactor had a captan concentration of 12 mg/L which is not acceptable for livestock drinking water. A half life of 52 h was observed in the batch bioreactor.

Keywords

Main Subjects


Agnihotri, V.P. 1971. Persistence of captan and its effects on microflora, respiration, and nitrification of a forest nursery soil, Canadian Journal of Microbiology, 1: 377-383. PMID: 5551317.
Al hattab, M.T. and A.E. Ghaly. 2012. Sequential remediation processes for a low level pesticide wastewater, Journal of Environmental Protection, 3: 150-163. DOI:10.4236/jep.2012.32019.
Broholm, M.M., K. Rugge, N. Tuxen, A.L. Hojberg, H. Mosbaek and P.L. Bjerg. 2001. Fate of herbicides in a shallow aerobic aquifer: A continuous field injection experiment (Vejen, Denmark), Water Resources Research,37: 3163- 3176. DOI:10.1029/2000WR000002.
Buyanovsky, G.A., G.J. Pieczonka, G.H. Wagner and M.L. Fairchild. 1988. Degradation of captan under laboratory conditions. Bulletin of Environmental Contamination and Toxicology, 40:689-695.DOI: 10.1007/BF01697516.
Centner, T.J. 1998. Unwanted agricultural pesticides: state disposal programs, Journal of Environmental Quality, 27 (4): 736-742. DOI:10.2134/jeq1998.00472425002700040002x.
Chilton, P.J., M.E. Stuart, D.C. Gooddy, R.J. Williams and A.C. Johnson. 2005. Pesticide fate and behaviour in the UK chalk aquifer, and implications for groundwater quality, Quarterly Journal of Engineering Geology and Hydrogeology,38: 65-81. DOI: 10.1144/1470-9236/04-014.
Cooper, J. and H. Dobson. 2007. The benefits of pesticides to mankind and the environment, Crop Protection, 26 (9): 1337-1348. DOI: 10.1016/j.cropro.2007.03.022.
de Lipthay, J.R., N. Tuxen, K. Johnsen, L.H. Hansen, H.J. Albrechtsen, P.L. Bjerg and J. Aamand. 2003. In situ exposure to low herbicide concentrations affects microbial population composition and catabolic gene frequency in an aerobic shallow aquifer, Applied and Environmental Microbiology 69: 461-467. PMCID: PMC152397.
Ghaly, A.E., F. Alkoaik and A. Snow. 2007. Degradation of pirimiphos-methyl during thermophilic composting of greenhouse tomato plant residues, Canadian Biosystem Engineering, 49(1): 1-11. ISSN: 1492-9058.
Ghaly, A.E., R. Kok. and J.M. Ingrahm. 1989. Growth rate determination of heterogeneous microbial population in swine manure. Applied Biochemistry and Biotechnology, 22: 59-78. DOI: 10.1007/BF02922697.
Hermanutz, R.O., L.H. Mueller and K.D. Kempfert, 1973. Captan toxicity to fathead minnows (pimephales promelas), bluegills (lepomis macrochirus), and brook trout (Salvelinus fontinalis). Journal of the Fisheries Research Board of Canada, 30(12): 1811-1817. DOI: 10.1139/f73-291.
Horowitz, J.K. and E. Lichtenberg. 1993. Insurance, moral hazard, and chemical use in agriculture. American Journal Agricultural Economics, 75(4): 926-935. Accessed on April 27, 2011 http://www.jstor.org/stable/1243980..
Karpouzas, D.G. and A. Walker, 2000. Factors influencing the ability of Pseudomonas putida strains epI and II to degrade the organophosphate ethoprophos, Journal of Applied Microbiology, 89: 40-48. PMID:10945777.
Karpouzas, D.G., A. Fotopoulou, U. Menkissoglu-Spiroudi and B.K. Singh, 2005. Non-specific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos, by two bacterial isolates, FEMS Microbiology Ecology, 53: 369–378. PMID:16329956.
Kearney, P.C., M.T. Muldoon, C.J. Somich, J.M. Ruth and D.J. Voaden. 1988. Biodegradation of ozonated atrazine as a wastewater disposal system, Journal of Agriculture and Food Chemistry, 36(6): 1301-1306. DOI: 10.1021/jf00084a044.
Krishna, K. R. and L. Philip. 2009. Biodegradation of mixed pesticides by mixed pesticide enriched cultures. Journal of Environmental Science and Health Part B, 44: 18–30. PMID:19089711.
Lappin, H.M., M.P. Greaves and J. Howard Slater. 1985. Degradation of the herbicide mecoprop [2-(2-methyl-4-chlorophenoxy)propionic acid] by a synergistic microbial community, Applied and Environmental Microbiology, 49(2): 429-433. PMCID: PMC238420.
Leoni, V., C. Cremisini, R. Giovinazzo, G. Puccetti and M. Vitali. 1992. Activated sludge biodegradation test as a screening method to evaluate persistence of pesticides in soil. Science of the Total Environment, 123-124: 279-289. DOI: 10.1016/0048-9697(92)90153-J.
Martínez-Toledo, M.V., V. Salmero´n, B. Rodelas, C. Pozo and J. Gonza´lez-Lo´pez. 1998. Effects of the fungicide captan on some functional groups of soil microflora, Applied Soil Ecology, 7: 245–255. DOI: 10.1016/S0929-1393(97)00026-7.
Megadi, V.B., P.N. Tallur, S.I. Mulla and H.Z. Ninnekar. 2010. Bacterial degradation of fungicide captan, Journal of Agricultural Food Chemistry, 58: 12863–12868. DOI:10.1021/jf1030339.
Munch, E.V., P. Lant and J. Keller. 1996. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors, Water Research, 30(2): 277-284. DOI:10.1016/0043-1354(95)00174-3.
Ning, J., Z. Bai, G. Gang, D. Jiang, Q. Hu, J. He, H. Zhang and G. Zhuang. 2010. Functional assembly of bacterial communities with activity for the biodegradation of an organophosphorus pesticide in the rape phyllosphere, FEMS Microbiology Letter, 306(2):135-43. PMID:20529133.
Oerke, E.C. and H.W. Dehne, 2004. Safeguarding production-losses in major crops and the role of crop protection, Crop Protection, 23(4): 275-285. DOI:10.1016/j.cropro.2003.10.001.
Osteen, C. and M. Livingstion, 2006. Pest management practices. Agricultural Resources and Environmental Indicators, Washington, DC. Accessed on November 27, 2011, http://www.ers.usda.gov.
Piotrowska-Seget, Z., R. Engel and E. Nowak Jacek Kozdroj. 2008. Successive soil treatment with captan or oxytetracycline affects non-target microorganisms. World Journal of Microbiology and Biotechnology, 24:2843–2848. DOI: 10.1007/s11274-008-9815-2.
Radianingtyas, H., G.K. Robinson and A.T. Bull. 2003. Characterization of a soil-derived bacterial consortium degrading 4-chloroaniline. Microbiology, 149: 3279–3287. PMID:14600240.
Rhee, S.K., G.M. Lee, J.H. Yoon, Y.H. Park, H.S. Bae and S.T. Lee. 1997. Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium. Applied and Environmental Microbiology, 63(7):2578-2585. PMCID: PMC168555.
Shan, X., L. Junxin, L. Lin and Q. Chuanling. 2009. Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. Journal of Environmental Sciences, 21: 76–82. DOI: 10.1016/S1001-0742(09)60014-0.
Sigma Aldrich, 2011. Material Safety Data Sheet.  Sigma-Aldrich, Oakville, Ontario. Accessed on November 22, 2011, http://www.sigmaaldrich.com.
Swanner, E.D and A.S. Templeton. 2011. Potential for nitrogen fixation and nitrification in the granite-hosted subsurface at henderson mine, CO, Front Microbiology, 2: 254. DOI: 10.3389/fmicb.2011.00254.
Tuxen, N., H. J. Albrechtsen and P.L. Bjerg, 2006. Identification of a reactive zone at a landfill leachate plume fringe using high resolution sampling and incubation techniques. Journal of contaminant hydrology 85: 179-194. DOI: 10.1016/j.jconhyd.2006.01.004.
Wainwright, M. and G.J.F. Pugh. 1975. Effect of fungicides on the numbers of micro-organisms and frequency of cellulolyticfungi in soils, Plant and Soil, 43: 561-572. DOI: 10.1002/jpln.19771400512.
Wilson, C. and C. Tisdell. 2001.  Why farmers continue to use pesticides despite environmental health and sustainability costs, Ecological Economics, 39(3): 449-462.DOI:10.1016/S0921-8009(01)00238-5.
Winterlin, W., J.N. Seiber, A. Craigmill, T. Baier, J. Woodrow and G. Walker. 1989. Degradation of pesticide waste taken from a highly contaminated soil evaporation pit in California, Archives of Environmental Contamination and Toxicology, 18: 734-747. DOI: 10.1007/BF01225011.
Wolfram Alpha Knowledge base, 2011. Wolfram Mathematica Chemical Data. Wolfarm Alpha, Champaign, Illinois. Accessed on November 22, 2011, http://www.wolframalpha.com.
Xiaoqiang, C.H.U, F. Hua, P. Xuedong, W. Xiao, S. Min, F. Bo and Y. Yunlong. 2008. Degradation of chlorpyrifos alone and in combination with chlorothalonil and their effects on soil microbial populations, Journal of Environmental Sciences, 20: 464–469. DOI: 10.1016/S1001-0742(08)62080-X.