FERTIGATION MANAGEMENT TO MAXIMIZE OLEUROPINE CONTENT IN OLIVE LEAVES

Document Type : Original Article

Authors

Ag. Eng. Res. Inst., Ag. Res. Center, Dokki, Giza, Egypt.

Abstract

This study was conducted for three successive seasons (2015/2016/2017) onChemlali olive trees 15 year’s old at a private orchard, located on the 32 km Cairo–Alexandria desert road. The main aim of the present research is to study the effect of irrigation system (dripper and bubbler); deficit irrigation regimes ”DIR” (75 % and 50 % ETc.) and 4 additional doses of urea by two rates of dose (200 gm and 400 gm), injected throughout irrigation system , with a rate of (1 kg./100 l), during March, on vegetative growth “ number of new shoots; shoot length; shoot diameter; number of leaves per shoot and leaf area”; fruit yield; alternative bearing index and Oleuropein concentration in the olive leaves. The following treatments were applied: T1: control (100% ETc. by drip with recommended fertilization rate); T2 (50% of ETc. by drip + 0.8 kg urea/tree); T3 (50% of ETc. by drip + 1.6 kg urea/tree); T4 (75% of ETc. by drip + 0.8 kg urea/tree); T5 (75 of ETc. by drip+1.6 kg urea/tree) T6 (50 % of ETc. by bubbler + 0.8 kg urea/tree); T7 (50% of ETc. by bubbler + 1.6 kg urea/tree); T8 (75% of ETc. by bubbler + 0.8 kg urea/tree) and T9 (75% of ETc. by bubbler+1.6 kg urea/tree). The results indicated that, all parameters of the vegetative growth and fruit yield increased by using bubbler 100l/h and applying the proposed DIR with additional doses of urea. The highest value of alternative bearing index was 0.256 recorded with control treatment (T1). Meanwhile the lowest alternate bearing index was 0.131 recorded with (T9). Oleuropein concentration in the olive leaves increased with all tested treatments compared with (T1), the lowest value of Oleuropein content was 58 (mg/100gm) obtained under the control treatment (T1). The highest values of Oleuropein content were 316.59 (mg/100gm) obtained with (T9). Thus, applying DIR 75 % ETc. with 4 additional doses of urea (400 gm for each) during March by using bubbler system, with saving 25% of irrigation water, will improve vegetative growth and reduce the severity of alternative bearing, as well as increase the Oleuropein concentration in the olive leaves.

Keywords

Main Subjects


Ahmed, F.F. and M.H. Morsy, 1999. A new method for measuring leaf area in different fruit species. Minia Journal of Agriculture and Development, (19): 97-105.
Ahmad-Qasem, MH., Cánovas, J., Barrajón-Catalán, E., Micol, V, Cárcel, J.A., García-Pérez, J.V. (2013): Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound, Innovat. Food Sci. Emerg. Tech. 17, 120-129.
Alagna F., Mariotti R., Panara F., Caporali S., Urbani S., Veneziani G., Esposto S., Taticchi A., Rosati A., Rao R., Perrotta G., Servili M., Baldoni L. (2012): Olive phenolic compounds: metabolic and transcriptional profiling during fruit development, BMC Plant Biol. 12, 162.
Aïachi Mezghani, M., Sahli, A., Jebari, A., 2007. Analysis and modeling of the vegetative growth of the olive tree (Olea europaea L.) in rainfall conditions. Fruits 61,45–56.
Aïachi Mezghani, M., Sahli, A., Labidi, F., Meddeb, K., Jebari, A., Ben El Hadj, S., 2008. Analysis of primary and secondary and modeling growth dynamics of oliveshoots (Olea europaea L.). J. Hortic. Sci. Biotechnol. 83, 411–419.
Al-Qarawi, A.A., Al-Damegh, M.A., El-Mougy, S.A. (2002). Effect of freeze dried extract of Olea europaea on pituitary-thyroid axis in rats. Phytotherapy Research, 16(3): 286-287.
Antolovich, M.; Prenzler, P.; Robards, K.; Ryan, D., (2000). Sample preparation in the determination of phenolic compounds in fruits. Analyst, 125, 989–1009.
Barranco, D., Fernandez, R., Rallo, L.  (1998) in El Cultivo Del Olivo, Variedades y partones del cultivo del olivo, eds Barranco D., Fernandez-Escobar R., Rallo L. (Junta de Andalucia, Seville, Spain), pp 61–87.
Bisignano, G., Tomaino, A., Cascio, R., Crisafi, G., Uccella, N., Saija, A., (1999) . On the in vitro antimicrobial activity of oleuropein and hydroxytyrosol. Journal of pharmacy and pharmacology, 51:971-974.
Bongi, G. and A. Palliotti, (1994). Olive. In: Shaffer, B. anderson, P.C. (Eds.), Handbook of Environmental Physiology of Fruit Crops: Temperate Crops, vol. I. CRC Press, Boca Raton, FL, USA, pp: 165-187.
Briante R, Patumi M, Terenziani S, Bismuto E, Febbraio F., (2002). Olea europaea L. leaf extract and derivatives:antioxidant properties. J Agric Food Chem 50: 4934–4940.
Cimato, A. and P. Fiorino, (1986). Alternate bearing in Olive. 2. The effect of the fruits on the flower differentiation and mineral nutrition. Rivisitadella Ortoftorofrutticoltura Italiana, 69(6): 413-429. Cited from Hort. Abst., 56: 8357.
Cuevas, J.; L. Rallo and H.F.Rapoport (1994): Crop load effects on floral quality in olive. Scientia Horticulturae: 59, 2, 123-130.
D’Andria, R., Tognetti, R., Morales-Sillero, A., Fernandez, J.E., Sebastiani, L., Troncoso,A., (2008). Deficit irrigation and fertigation practices in olive growing: conver-gences and divergences in two case studies. Plant Biosyst. 142, 138–148.
FAO. (2011). Country Pasture/Forage Resource Profiles, Publishing by Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy, pg. 15 from 44.
Fernandez J E (2006). Irrigation management in olive. In: Biotechnology and Quality in Olive: Recent Advances in Olive Industry (Caruso T; Motisi A; Sebastiani L eds), pp. 295–305, Marsala, Italy.
Fernandez, J.E., Moreno, F., (1999). Water use by olive tree. J. Crop Prod. 2, 101–162
Giménez, C., E. Fereres, C. Ruz and F. Orgaz, (1997). Water relations and gas exchange of olive trees: diurnal and seasonal patterns of leaf water potential, photosynthesis and stomatal conductance. Acta Horticulturae, 449: 411-415.
Goldhamer D A (1999). Regulated deficit irrigation for California canning olives. Acta Horticulturae, 474, 369–372.
Guinda, A.; Albi, T.; Camino, M. C. P.; Lanzón, A. (2004). Supplementation of oils with oleanolic acid from the olive leaf (Olea europaea). Eur. J. Lipid Sci. Technol., 106, 22–26.
Hayes JE, Stepanyan V, Allen P, O'Grady M.N., (2011). The effect of lutein, sesamol, ellagic acid and olive leaf extract on lipid oxidation and oxymyoglobin oxidation in bovine and porcine muscle model systems. Meat Sci 83: 201-208.
Herrero, M.; Temirzoda, T.N.; Segura-Carretero, A.; Quirantes, R.; Plaza, M.; Ibañez, E., (2011). New possibilities for the valorization of olive oil by-products. J. Chromatogr. A, 1218, 7511–7520.
Jakopic,  J., Robert, V., Franci S, (2009). Extraction of phenolic compounds from green walnut fruits in different solvents, Acta Agriculture Slovenica, 93 - 1, maj  str. 11-15.
Iniesta, F., Testi, L., Orgaz, F., Villalobos, F.J., (2009). The effects of regulated andcontinuous deficit irrigation on the water use, growth and yield of olivetrees. Eur. J. Agron. 25, 258–265.
Le Tutour, B., Guedon, D. (1992) Antioxidative activities of Olea Europea leaves and related phenolic compounds. Phytochemistry 31: 1173-1178.
Lee, O.H., Lee, B.Y., Lee, J., Lee, H.B., Son, J.Y., Park, C.S., Shetty, K., Kim, Y.C. (2009): Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities, Biores. Tech. 100, 6107-6113.
M.A.L.R. (2015): Ministry of Agriculture and Land Reclamation Economic Affairs Sector -  Agriculture Statics,  fruit trees, Vol.(2)p 337-338.
Masmoudi-Charfi, C., Ben Mechlia, N., (2007). Characterization of young olive trees growth during the first six years of cultivation. Adv. Hortic. Sci. 21, 116–124.
Masmoudi-Charfi, C., Ben Mechlia, N., (2008). Changes in olive tree height growth during the first years of cultivation. Adv. Hortic. Sci. 22, 8–12.
Micol, V., Caturla, N., Pérez-Fons L., Mas V., Pérez L., et al. (2005). The olive leaf extract exhibits antiviral activity against viral haemorrhagic septicaemia rhabdovirus (VHSV). Antiviral Res 66:129-136.
Owen, R.W.; Haubner, R.; Würtele, G.; Hull, E.; Spiegelhalder, B.; Bartsch, H. (2004). Olives and olive oil in cancer prevention. Eur. J. Cancer Prev., 13, 319-326.
Palese, A.M., Nuzzo, V., Favati, F., Pietrafesa, A., Celano, G., Xiloyannis, C., (2010). Effectsof water deficit on the vegetative response, yield and oil quality of olive trees(Olea europaea L., cv. Coratina) grown under intensive cultivation. Sci. Hortic.125, 222–229.
Palomo MJ, Moreno F, Fernández JE, Díaz-Espejo A, Girón IF. (2002). Determining water consumption in olive orchards using the water balance approach. Agricultural Water Management 55: 15-35.
Pearce S.C., Dobersek-Urbanc S., (1967). The measurements of irregularity in growth and cropping. J. Hort. Sc. 42:295-305.
Peralbo-Molina, A., Luque de Castro, M.D. (2013): Potential of residues from the mediterranean agriculture and agrifood industry, Trends Food Sci. Tech. 32, 16-24.
Şahin, S.; Ahmed Malik, N.S.; Perez, J.L.; Brockington, J. E. (2012): Seasonal Changes of Individual Phenolic Compounds in Leaves of Twenty Olive Cultivars Grown in Texas, J. Agric. Sci. Technol. B, 2, 242-247.
Salama, A.M., El-Gendy, O. H., & Ali, E. A. (2016). Olive “The blessed of desert tree” technical bulletin No. (2). Issued by General admin. of Ag. Culture.
Schieber, Andreas; Petra Keller and Reinhold Carle (2001). Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography, Journal of Chromatography A, 910 265–273.
Somova L, Shode F, Ramnanan P, Nadar A (2003) Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. J Ethnopharmacol 84: 299-305.
Tabera, J.; Guinda, A.; Ruiz-Rodriguez, A.; Senorans, J. F.; Ibanez, E.; Albi, T., Reglero, G. (2004). Countercurrent supercritical fluid extraction and fractionation of high-added-value compounds from a hexane extract of olive leaves. J. Agric. Food Chem., 52, 4774–4779.
Tognetti R; d’Andria R; Lavini A; Morelli G, (2006). The effect of deficit irrigation on crop yield and vegetative development ofOlea europaea L. (cultivars Frantoio and Leccino). European Journal of Agronomy, 25, 356–364.
Tognetti R; d’Andria R; Morelli G; Alvino A, (2005). The effect of deficit irrigation on seasonal variations of plant water use in Olea europaea L. Plant and Soil, 273, 139–155.
Troncoso, A., Liñán, J., Cantos, M., Zárate, R. and Lavee, S. (1997). Influencia de la fertirrigación con urea sobre la disponibilidad de N-NO3 y el desarrollo del olivo. Fruticultura Profesional 88: 83-87.
Tsimidou, M. Z., Papoti, V. T., (2010). “Bioactive ingredients in olive leaves. In: Olives and olive oil in health and disease prevention.” Preedy V. P. and Watson R. R. (Eds), Elsevier Inc. 2010, Chapter 39, pp. 351-358.
Uccella N, Saija A (2001). Olive biophenols: functional effects on human wellbeing. Trends Food Sci. Technol. 11:357-363.
Vissers M.N., Zock P.L., Katan M.B. (2004): Bioavailability and antioxidant effects of olive oil phenols in humans: a review, Eur. J. Clin. Nutr. 58, 955-965.
Wiesman, Z., Ronen, A., Ankarion, Y., Novikov, V., Maranz, S., Chapagain, B., & Avramovich, Z. (2002c). Effect of olive Nutri-Vant on yield and quality of olives and oils. Acta Hort, 594, 557–562.
Wiesman, Z., Luber, M., Ronen, A., & Markus, A. (2002d). Ferti-Vant – a new nondestructive and long-lasting in vivo delivery system for foliar nutrients. Acta Hort, 594, 585–590.
Wild, S. A., R. B .Corey, J. G. Lyer, and G. K. Voigt, (1985). Soil and Plant Analysis for Tree Culture. Oxford and IBH Publishing Co., New Delhi, India