GROUND-BASED REMOTE SENSING FOR ESTIMATING THE MOISTURE CONTENT OF DIFFERENT SOIL TYPES

Document Type : Original Article

Authors

1 Assoc. Prof. of Agric. Eng., Evaluation of Natural Resources Dept., Environ. Studies and Res. Inst., Sadat City Univ., Egypt.

2 Lecturer of Ag. Eng., Fac. of Ag., Mansoura Univ., Egypt.

Abstract

Soil moisture information has been used for irrigation scheduling, site-specific management of diseases and pests, and improving crop yield prediction. Spectral remote sensing offers the potential to provide more information for making better-informed management decisions in real time. In contrast, the tradition methods for irrigation management such as tensiometers and oven dry for estimating moisture content are generally time consuming, numerous observations are required to characterize them. The aim of this study was to investigate the suitability of hyperspectral reflectance sensor to estimate the moisture content of different soils. For that the spectral indices of soil were tested to assessment the moisture content by wetted the soil from dry to saturation conditions. The results showed that the three water spectral indices R960/R940, R970/R940 and R970/R900 showed close and highly significant associations with moisture content of sandy soil, and coefficients of determination reach up to R2 = 0.98. The three water spectral indices R878/R862, R956/R926 and R1056/R994 showed close and highly significant associations with moisture content of sandy loam soil, and coefficients of determination reach up to R2 = 0.84. As well as the three water spectral indices R956/R924, R956/R926 and R956/R9284 showed close and highly significant associations with moisture content of clay soil, and coefficients of determination reach up to R2 = 0.86. In conclusion, the use of spectral remote sensing may open an avenue in irrigation management for fast, high-throughput assessments of water status of soil samples.

Keywords

Main Subjects


Belényesi,  M.,  Kristóf,  D.,  Magyari,  J.  2008.  Távérzékelés  a  környezetgazdálkodásban    Elméleti  jegyzet,  Egyetemi  jegyzet SZIE Mezőgazdasági- és Környezettudományi Kar Gödöllő, 78.
Bowers, S.A., Hanks, R.J., 1965. Reflection of radiant energy from soil, Soil Science, 100:130-138.
Carter, G.A., 1991. Primary and secondary effects of water content on the spectral reflectance of leaves. American Journal of Botany, 78, 916- 924.
Csornai,  G. and Dalia, O., 1991. Távérzékelés Kézirat, Erdészeti és Faipari Egyetem Földmérési és Földrendezői Főiskolai Kar, Székesfehérvár.
El-Hendawy, S., Al-Suhaibani, N., Salem, A., Ur Rehman, S. and Schmidhalter, U., 2015. Spectral reflectance indices as a rapid nondestructive phenotyping tool for estimating different morphophysiological traits of contrasting spring wheat germplasms under arid conditions. Turk. J. Agric. For. 39: 572-587.
Elsayed, S., Rischbeck, P. and Schmidhalter, U., 2015. Comparing the performance of active and passive reflectance sensors to assess the normalized relative canopy temperature and grain yield of drought-stressed barley cultivars. Field Crop Res. 177: 148-160.
Kipp, S., Mistele, B., Schmidhalter, U., 2014. The performance of active spectral reflectance sensors as influenced by measuring distance, device temperature and light intensity. Computer Electron. Agric. 100, 24-33.
Nagy, A. and Tamás, J., 2009. Integrated airborne and field methods to characterize soil water regime. [In: Celkova, A. (ed.) Proceedings of peer-reviewed contributions, Transport of water, chemicals and energy in the soil-plant-atmosphere system] Institute of Hydrology, Slovak Academy of Sciences, Bratislava, 412-420.
Nagy, A., Riczu, P., Gálya, B. and Tamás, J., 2014. Spectral estimation of soil water content in visible and near infra-red range. Eurasian Journal of Soil Science 3, 163 - 171.
Peñuelas, J., Filella, I. and Serrano, L. 1993. The reflectance at the 950–970 nm region as an indicator of plant water status. International Journal of Remote Sensing, 14, 1887-1905.
Peñuelas, J., Isla, R., Filella, I. and Araus, J.L., 1997. Visible and near infrared reflectance assessment of salinity effects on barley. Crop Sci. 37: 198-202.
Rajkai, K. 2004. A víz mennyisége, eloszlása és áramlása a talajban. MTA TAKI Budapest.
Rischbeck P., Elsayed S., Mistele B., Barmeier G., Heil K. and Schmidhalter U. 2016. Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley. Eur. J Agron. 78: 44-59.
Tóth, Á. 1995. Az esőszerű és a mikroöntözés gyakorlata.KITE Rt. Nádudvar. 118.
Woolley, J. T. 1971. Reflectance and transmittance of light by leaves. Plant Physiology, 47, 656- 662.