INNOVATIVE SUBSURFACE DRIP IRRIGATION CONFIGURATIONS ENHANCE WATER USE EFFICIENCY AND OLIVE PRODUCTIVITY IN SANDY SOILS

Document Type : Original Article

Author

Assoc. Prof, Dept. of Ag. and Bios. Eng., Fac. of Ag., Benha U., (Benha, Egypt).

10.21608/mjae.2025.423802.1164

Abstract

Efficient irrigation management is essential for sustainable olive production in semi-arid regions with sandy soils. This study evaluated three irrigation configurations—conventional surface drip, vertical subsurface drip, and inclined subsurface drip in terms of soil water distribution, crop yield, water productivity (WP), and fruit quality during the 2022–2023 seasons in Egypt. Soil moisture monitoring revealed that the inclined subsurface system provided the most favorable distribution, achieving deeper infiltration (up to 120 cm) and broader lateral spread compared to the vertical and surface systems. Crop yield analysis showed significant improvements under subsurface methods, with the inclined system producing the highest yields (17.9 and 21.9 ton/ha in 2022 and 2023, respectively), significantly outperforming the surface and vertical treatments. Water productivity followed a similar trend, increasing from 2.0 to 2.8 kg/m³ under the inclined configuration, compared to 1.1–1.6 kg/m³ for surface drip. Fruit quality attributes, including fruit, pulp, and seed weights, were also significantly enhanced under subsurface irrigation, with the inclined system consistently producing the largest fruits and heaviest pulp. These findings highlight the superiority of inclined subsurface drip irrigation in optimizing soil moisture dynamics, improving water use efficiency, and enhancing yield and fruit quality, thereby offering a promising strategy for sustainable olive production in arid and semi-arid environments.

Keywords

Main Subjects


Aboukeira, A. A.-A., A. El-Shafie, and M. H. Rady. 2010. “Implications of Agricultural Drainage Water Reuse: I. Crop Yield and Water Productivity.” 1-. American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/2013.32175.
Allen, R., L. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration - Guidelines for computing crop water requirements. Evapotranspiración del cultivo Guías para la determinación de los requerimientos de agua de los cultivos. ESTUDIO FAO RIEGO Y DRENAJE 56.
Amare, D. G. 2020. “Review on Effect of Different Irrigation Method on Water Use Efficiency, Yield Productivity and Nitrogen Application.” J Biol Agric Healthc, 10 (8): 1–9. International Institute for Science, Technology and Education. https://doi.org/10.7176/JBAH/10-8-01.
El-Nesr, M. N., A. A. Alazba, and J. Šimůnek. 2014. “HYDRUS simulations of the effects of dual-drip subsurface irrigation and a physical barrier on water movement and solute transport in soils.” Irrig Sci, 32 (2): 111–125. Springer Verlag. https://doi.org/10.1007/S00271-013-0417-X/METRICS.
Gallo Jr., A., K. Odokonyero, M. A. A. Mousa, J. Reihmer, S. Al-Mashharawi, R. Marasco, E. Manalastas, M. J. L. Morton, D. Daffonchio, M. F. McCabe, M. Tester, and H. Mishra. 2021. “Superhydrophobic sand mulches increase agricultural productivity in arid regions.” arXiv.org.
Lamm, F. R., J. P. Bordovsky, L. J. Schwankl, G. L. Grabow, J. Enciso-Medina, R. T. Peters, P. D. Colaizzi, T. P. Trooien, and D. O. Porter. 2010. “Subsurface Drip Irrigation: Status of the Technology in 2010 Freddie.” 5th National Decennial Irrigation Conference Proceedings, 5-8 December 2010, Phoenix Convention Center, Phoenix, Arizona USA, 1-. St. Joseph, MI: American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/2013.35880.
Maisiri, N., A. Senzanje, J. Rockstrom, and S. J. Twomlow. 2005. “On farm evaluation of the effect of low cost drip irrigation on water and crop productivity compared to conventional surface irrigation system.” Physics and Chemistry of the Earth, Parts A/B/C, 30 (11–16): 783–791. Pergamon. https://doi.org/10.1016/J.PCE.2005.08.021.
Mansour, H. A., H. Jiandong, R. Hongjuan, A. N. O. Kheiry, and S. K. Abd-Elmabod. 2019. “Influence of using automatic irrigation system and organic fertilizer treatments on faba bean water productivity.” International Journal of GEOMATE, 17 (62): 250–259. GEOMATE International Society. https://doi.org/10.21660/2019.62.35037.
Martínez, J., and J. Reca. 2014. “Water Use Efficiency of Surface Drip Irrigation versus an Alternative Subsurface Drip Irrigation Method.” Journal of Irrigation and Drainage Engineering, 140 (10): 04014030. American Society of Civil Engineers (ASCE). https://doi.org/10.1061/(ASCE)IR.1943-4774.0000745/ASSET/D0FD49D1-8102-4FDC-BE5C-62234F55553C/ASSETS/IMAGES/LARGE/FIGURE6.JPG.
Martínez-Gimeno, M. A., L. Bonet, G. Provenzano, E. Badal, D. S. Intrigliolo, and C. Ballester. 2018. “Assessment of yield and water productivity of clementine trees under surface and subsurface drip irrigation.” Agric Water Manag, 206: 209–216. Elsevier. https://doi.org/10.1016/J.AGWAT.2018.05.011.
Mohammed, M. E. A., M. R. Alhajhoj, H. M. Ali-Dinar, and M. Munir. 2020. “Impact of a Novel Water-Saving Subsurface Irrigation System on Water Productivity, Photosynthetic Characteristics, Yield, and Fruit Quality of Date Palm under Arid Conditions.” Agronomy 2020, Vol. 10, Page 1265, 10 (9): 1265. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/AGRONOMY10091265.
Monteiro, R. O. C., R. D. Coelho, and P. F. C. Monteiro. 2014. “Water and nutrient productivity in melon crop by fertigation under subsurface drip irrigation and mulching in contrasting soils.” Ciência Rural, 44 (1): 25–30. Universidade Federal de Santa Maria. https://doi.org/10.1590/S0103-84782013005000151.
Reddy, M., M. S. Ayyanagowdar, and M. Nemichandrappa. 2018. “Characterize the Moisture Distribution Pattern in Drip Irrigation under Sandy Loam Soil.” Int J Curr Microbiol Appl Sci, 7 (04): 2915–2923. Excellent Publishers. https://doi.org/10.20546/IJCMAS.2018.704.332.
Rodríguez-Sinobas, L., M. Gil, R. Sánchez, and J. Benitez. 2012. “Evaluation of drip and subsurface drip irrigation in a uniform loamy soil.” Soil Sci, 177 (2): 147–152. https://doi.org/10.1097/SS.0B013E3182411317.
Sinobas, L. R., M. G. Rodríguez, L. R. Sinobas, and M. G. Rodríguez. 2012. “A Review of Subsurface Drip Irrigation and Its Management.” Water Quality, Soil and Managing Irrigation of Crops. IntechOpen. https://doi.org/10.5772/30702.
Wu, J., G. Gao, B. Zhang, al -, C. Bazán-Prieto, M. Blanco-Velasco, J. Cárdenas-Barrera, R. N. Aljabri, and S. E. Aldulaimy. 2021. “Effect of subsurface drip irrigation manners and percentages of moisture depletion on some hydraulic parameters and potato yield.” IOP Conf Ser Earth Environ Sci, 904 (1): 012012. IOP Publishing. https://doi.org/10.1088/1755-1315/904/1/012012.
Yang, M. Da, S. J. Leghari, X. K. Guan, S. C. Ma, C. M. Ding, F. J. Mei, L. Wei, and T. C. Wang. 2020. “Deficit Subsurface Drip Irrigation Improves Water Use Efficiency and Stabilizes Yield by Enhancing Subsoil Water Extraction in Winter Wheat.” Front Plant Sci, 11: 499754. Frontiers Media S.A. https://doi.org/10.3389/FPLS.2020.00508/BIBTEX.
Yang, P., L. Wu, M. Cheng, J. Fan, S. Li, H. Wang, and L. Qian. 2023. “Review on Drip Irrigation: Impact on Crop Yield, Quality, and Water Productivity in China.” Water 2023, Vol. 15, Page 1733, 15 (9): 1733. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/W15091733.
Yu, J., J. G. Shi, X. Ma, P. F. Dang, Y. L. Yan, A. I. Mamedov, I. Shainberg, and G. J. Levy. 2017. “Superabsorbent Polymer Properties and Concentration Effects on Water Retention under Drying Conditions.” Soil Science Society of America Journal, 81 (4): 889–901. John Wiley & Sons, Ltd. https://doi.org/10.2136/SSSAJ2016.07.0231.