EFFECT OF ULTRASONIC PRETREATMENT OF COW MANURE ON BIOGAS PRODUCTION USING AN UP-FLOW ANAEROBIC SLUDGE BLANKET REACTOR

Document Type : Original Article

Authors

1 Prof. Dept of Ag. And Biosystems Eng., Fac., of Ag. Alex., U., Alex., Egypt.

2 PhD. Candidate Ag. And Biosystems Eng. Dept., Fac. of Ag. Alex., U., Alex., Egypt.

3 Asist. Prof. Ag. Eng. Ag Eng. Res. Inst., Ag. Res. Center, Egypt.

Abstract

This study investigates the effect of ultrasonic technique (US -20 kHz) pre-treatment, of cow manure (10% T.S.) on biogas production with up-flow anaerobic sludge blanket (UASB).  Ultrasonic accelerates the breakdown of organic matter. Tow UASB prototypes were established: one is attached with a US unit, and the other serving as a control, with varying exposure durations (10, 20, and 30 minutes) and power levels (50, 100, and 150W). The results indicate that ultrasonic pretreatment significantly enhanced biogas production, reaching up to 478.55% over control at ultrasonic 150 watt, time 10 minute. For exposure power levels of UP50T30, UP100T30, and UP150T30, the cumulative biogas production increased by 172.22, 433.18, and 394.91%, respectively compared to control. Data indicated that increasing exposure power from UP50 to UP100 increase in cumulative biogas production, meanwhile, cumulative biogas production decreased by increasing exposure power from UP100 to UP150. However, increasing power to 150 W resulted in a decline in biogas output, indicating a potential negative effect on higher power levels. At low power, extending exposure times (from 10 to 30 minutes) resulted in increases in total biogas generation by 30.82%, 85.40%, and 172.22%, respectively, over control. At medium power, biogas production improved with longer exposure times. Conversely, at high power, increasing exposure from 10 to 20 minutes decreased cumulative biogas output from 37.49 to 31.80, a slight increase to 32.07 liters at 30 minutes. These findings demonstrate while ultrasonic pretreatment can enhance biogas production, increasing the energy level over time leads to decreased production.

Keywords

Main Subjects


Alagöz, B., Yenigün, O. and Erdinçler A. (2018) 'Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment ', Ultrasonics Sonochemistry, 40, (B), 193-200.
Arman, I., Ansari, K.B., Danish, M. et al. (2023). 'Ultrasonic-Assisted Feedstock Disintegration for Improved Biogas Production in Anaerobic Digestion: A Review.' Bioenerg. Res. 16, 1512–1527 https://doi.org/10.1007/s12155-023-10608-4.
 Black, C. A., D. O. Evans, L. E. Ensminger, J. L. White, F. C. Clark and Dineuer (1965).  Methods of Soil Analysis 2-Chemical and Microbiological Properties. American Soc. Agron. Inc. Madison. Wisconsin. USA
Chen, Y., Li, X., & Zhang, Q. (2023). Influence of ultrasonic pretreatment on microbial communities and methane production in anaerobic digestion. Bioresource Technology,
Debowski, M., Swica, I. and Zielnski, M. (2022) Ultrasonic Disintegration to Improve Anaerobic Digestion of Microalgae with Hard Cell Walls Scenedesmus sp. and Pinnula Ria sp. Available at <https://www.mdpi.com/journal/ plants
 Gosch, A., M. Hildegart, W. Ursula, and J. Walter (1983).  'The anaerobic treatment of poultry manure', Animal Res.; and Dev., 17, 62-73
Hamilton, D. and Zhang H. (2011) Solids Content of Wastewater and Manure Oklahoma Cooperative Extension Fact Sheets, Available at < http://osufacts.okstate.edu
 Houtmeyers. S., J. Degrève, K. Willems, R. Dewil and L. Appels (2014).  'Comparing the influence of low power ultrasonic and microwave pretreatments on the solubilization and semi-continuous anaerobic digestion of waste activated sludge', Bioresour. Technol., 171, 44–49.
 Hassan, M., W. Ding, M. Umar, and G. Rasool (2017).  'Batch and semi-continuous anaerobic co-digestion of goose manure with alkali solubilized wheat straw: A case of carbon to nitrogen ratio and organic loading rate regression optimization'. Bioresour. Technol., 230: 24–32. https://doi.org/10.1016/j.biortech.2017.01.025.
Joshi, S. M., and Gogate P. R. (2019) 'Intensifying the biogas production from food waste using ultrasound: Understanding into effect of operating parameters', Ultrasonics Sonochemistry, 59, 104755
Karthikeyan, O.P., E. Trably, S. Mehariya, N. Bernet, J.W.C. Wong and H. Carrere (2018).  'Pretreatment of food waste for methane and hydrogen recovery: a review', Bioresour. Technol. 249: 1025–1039. https://doi.org/10.1016/j.biortech.2017.09.105.
Kumari, D, and Singh R. (2020) 'Ultrasonic assisted petha wastewater pretreatment of rice straw for optimum production of methane and ethanol using mixed microbial culture', Renewable Energy', 145, 682. 690.
Kainthola, J., Kalamdhad A.S. and Goud V.V. (2019) 'A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques', Process Bio chem., 84, 81–90.
Karthikeyan, P. K., Bandulasena, H. C. H. and Radu T. (2024) 'A comparative analysis of pre-treatment technologies for enhanced biogas production from anaerobic digestion of lignocellulosic waste', Industrial Crops and Products, 215, 118591.
 Lan, M., W. Li, C. Chang, L. Liua, P. L. X. Pana, X. Maa, C. Hea, and Y. Jiao (2020).  'Enhancement on enzymolysis of pigskin with ultrasonic assistance' Bioengineered, 11(1), 397. https://doi.org/10.1080/21655979.2020.1736736
LO, K. V., Carson, W. M and Jeffers, K. (1981) 'A computer-aided design program for biogas production from animal manure', Livestock Waste: A Renewable Resource, 141, 133-135.
Le Pera, A., M. Sellaro, E. Bencivenni, and F. D’Amico (2022). 'Environmental sustainability of an integrate anaerobic digestion-composting treatment of food waste: analysis of an Italian plant in the circular bio-economy strategy', Waste Manag. 139, 341-351. https://doi.org/10.1016/j.wasman.2021.12.042.
Li, S., & Yang, T. (2023). Optimizing ultrasonic pretreatment for food waste digestion. Renewable Energy, 214, 998–1007.
 Meegoda, J.N., Li, B., Patel, K., & Wang, L.B. (2018).  'A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion', Int. J. Environ. Res. Public Health, 2018, 15, 2224. https://doi.org/10.3390/ijerph15102224
Oz, N. A. and Uzun A. C. (2015) 'Ultrasound pretreatment for enhanced biogas production from olive mill wastewater', Ultrason. Sonochem., 22, 565–572.
 Pilli, S., P. Bhunia, S. Yan, R. J. LeBlanc, R.D. Tyagi, and R.Y. Surampalli (2010).  'Ultrasonic pretreatment of sludge', Ultrasonics Sonochemistry,  18, (1), 1-18. Available at < https://doi.org/10.1016/j.ultsonch.2010.02.014.
 Pansripong, S., W. Arjharn, P. Liplap, and T. Hinsui (2019).   'Effect of Ultrasonic Pretreatment on Biogas Production from Rice Straw', Oriental Journal of Chemistry, 35 (4), 1265-1273.
Prado, M, Borea, L. and Cesaro A. (2016) 'Removal of emerging contaminant and fouling control in membrane bioreactors by combined ozonation and sonolysis', Int. Biodeterior Biodegrad., 119, 577–586.
 Rasapoor,M., B.Young, R.Brar, A.Sarmah,W.Q.Zhuang,and S.Baroutian (2020) . Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation., Fuel,261, (1),116497,Available at https://doi.org/10.1016/j.fuel.2019.116497.
 Rodriguez, C., A. Alaswad, K.Y. Benyounis and A.G. Olabi (2017).  'Pretreatment techniques used in biogas production from grass', Renew. Sustain. Energy Rev., 68, 1193–1204.
Shekwaga, O.K.C., Ross, A. B. and Valero M. A. C. (2021) 'Enhanced in-situ biomethanation of food waste by sequential inoculum acclimation: Energy efficiency and carbon savings analysis', Waste Management, 130, (1), 12-22. Available at <https://doi.org/10.1016/j.wasman.2021.04.053
 Silva.J. M, L. H. Martins  , D. K. T. Moreira  ,L. P. Silva, P. P. M. Barbosa, A. Komesu, N. R. Ferreira and J. A. R. Oliveira, (2023). Impact of ultrasonic treatment on biogas production from dairy manure. Renewable Energy Journal, 112, 478–487.
Uddin, M. M., and Wright, M. M. (2022) 'Science Review Physics. Available at <https://doi.org/10.1515/psr-2021-0038.
WBA (2019) Global Potential of Biogas. World Biogas Associ. London, SE1 9HZ, UK.
Zhen, G., X. Lu, H. Kato, Y, Zhao ,andY. Y. Li (2017) Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion, Current Advances, full-scale application and future perspectives. Renew Sustain Energy, 69, 559 – 77. https://doi.org/10.1016/j.rser.2016.11.187
Zhou, L., & Kim, J. (2023). Cavitation effects of ultrasonic pretreatment on biogas yield from agricultural waste. Energy Reports, 9, 2450–2462.
Zeynali, R., Khojastehpour, M. and Ebrahimi-Nik M. (2017) 'Effect of ultrasonic pre-treatment on biogas yield and specific energy in anaerobic digestion of fruit and vegetable wholesale market wastes', Sustainable Environment Research, 27 :259-264.
 Zerroukia, S., R. Rihanib, K,Lekikota, and I. Ramdhanea, (2021).   'Enhanced biogas production from anaerobic digestion of wastewater from the fruit juice industry by Sono lysis: experiments and modeling', Water Science & Technology, 84 (3), 644. Available at <http://doi: 10.2166/wst.2021.245.