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ABSTRACT 

This study evaluates the predictive performance of Support Vector 

Machines (SVM) and Autoregressive Integrated Moving Average 

(ARIMA) models in forecasting the Standardized Precipitation 

Evapotranspiration Index (SPEI) for three critical agricultural 

regions in Egypt: Nubariyah, Wadi Al-Natrun, and Al-Boseli. 

Accurate SPEI forecasting is necessary for effective water 

management and agricultural planning, especially in arid 

regions. Through comprehensive analysis involving time series 

decomposition and model evaluation using Mean Squared Error 

(MSE) and Mean Absolute Error (MAE), ARIMA models 

consistently outperformed SVM models across all locations. The 

ARIMA (1,1,1) model showed superior predictive accuracy, with 

MSE reductions ranging from 1.4% to 14% over the SVM models. 

In Nubariyah, the ARIMA model achieved an MSE of 1.7499 

compared to 1.7746 for the SVM model. In Wadi Al Natrun, the 

ARIMA model's MSE was 2.0735, significantly lower than the 

SVM model's 2.4113. In contrast, in Al Boseli, the ARIMA model 

recorded an MSE of 1.8033 versus 2.0844 for the SVM model. The 

decomposition of SPEI values into trend, seasonal, and residual 

components revealed a long-term trend towards increasing 

dryness over the 30 years, alongside regular annual fluctuations. 

These insights are essential for understanding climatic behavior 

and informing water management strategies. The ARIMA model's 

superior performance underscores its effectiveness in anticipating 

drought conditions and optimizing water usage. Research should 

explore advanced models like Recurrent Neural Networks (RNN) 

to enhance forecasting accuracy further and expand the analysis 

to additional regions with more recent data to validate these 

findings, thereby improving drought prediction and water 

resource management. 

INTRODUCTION 

roughts and climatic variability significantly impact agriculture, water resources, and 

overall socio-economic stability. Effective monitoring and prediction of droughts are 

essential for mitigating their adverse effects. Traditional drought indices, which are 

usually used to estimate drought severity based on precipitation data only, make them less 

accurate because they do not consider other factors, such as temperature and evapotranspiration. 
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such as the Standardized Precipitation Index (SPI) and the Palmer Drought Severity Index 

(PDSI), primarily rely on precipitation data. However, these indices often must capture the 

comprehensive climatic conditions influencing drought severity, such as temperature and 

evapotranspiration. Model selection was based on the lowest Akaike Information Criterion 

(AIC) which is a mathematical method for evaluating how well a model fits the data it was 

generated from. In statistics, AIC is used to compare different possible models and determine 

the best fit for the data. And Bayesian Information Criterion (BIC) values which is a statistical 

measure that is used in model selection and hypothesis testing to detect the best model among 

all other available candidates. This method strikes a balance between model fit and complexity 

and aims to identify the most economical and informative model.  

The Standardized Precipitation Evapotranspiration Index (SPEI), introduced by Vicente-

Serrano et al. (2010), addresses these limitations by incorporating precipitation and 

evapotranspiration data. This dual consideration makes SPEI a robust tool for evaluating 

multiscale droughts, especially against climate warming. The SPEI's ability to account for 

temperature effects enhances its sensitivity to climate change impacts, making it highly 

effective in determining drought severity at appropriate temporal resolutions (Shi et al., 2021; 

Yao et al., 2022). 

Accurate forecasting of SPEI is crucial for effective water resource management and 

agricultural planning. Traditionally, the Autoregressive Integrated Moving Average (ARIMA) 

models have been widely used for time series forecasting due to their robustness and 

interpretability. The ARIMA model, proposed by Box and Jenkins (1976), combines 

autoregression (AR) and moving average (MA) processes with differencing (I) to make the time 

series stationary. ARIMA models have been extensively applied in hydrology and climatology 

to predict various climatic variables, including rainfall and temperature (Montanari et al., 2006). 

Despite their simplicity and interpretability, ARIMA models assume linearity and may not 

adequately capture complex, non-linear patterns in climatic data (Hipel and McLeod, 1994). 

With advancements in machine learning, models like Support Vector Machines (SVM) have 

emerged as powerful tools for prediction tasks, offering flexibility and the ability to capture 

non-linear relationships in data. Support Vector Machines, introduced by Cortes and Vapnik 

(1995), are particularly effective in high-dimensional spaces and can handle non-linear 

relationships using kernel functions (Smola and Schölkopf, 2004). In climate science, SVMs 

have been employed to predict various environmental parameters, such as temperature, rainfall, 

and drought indices, demonstrating superior performance compared to traditional statistical 

methods (Ghosh and Mujumdar, 2008). 

Previous studies have utilized various statistical and machine learning models for time series 

forecasting of climatic indices. The SPEI, extending the widely used Standardized Precipitation 

Index (SPI) by incorporating potential evapotranspiration (PET) into its calculation, allows for 

a more sensitive measure of drought severity under climate change impacts (Vicente-Serrano 

et al., 2010). Studies have shown that SPEI effectively captures short-term and long-term 

drought events across different climatic regions (Beguería et al., 2014). 

Drought prediction is crucial for proactive water resource management and agricultural 

planning. Historically, drought forecasting relied on stochastic models (e.g., ARIMA) to 



AGRICULTURAL IRRIGATION AND DRAINAGE ENGINEE 

 

MJAE ـ October 2024                                                                                                                     265 

capture the seasonality and lag in time series data (Han et al., 2010; Mishra and Singh, 2011). 

Despite widespread use, these models assume linearity and may need help to capture the non-

linear patterns often present in climatic data. 

Advancements in machine learning have introduced new methodologies that offer greater 

flexibility and accuracy in drought prediction. Support Vector Machines (SVM), for instance, 

have demonstrated superior performance in handling non-linear relationships compared to 

traditional statistical methods (Ghosh and Mujumdar, 2008). Moreover, hybrid models that 

integrate ARIMA with machine learning techniques, such as Long Short-Term Memory 

(LSTM) networks, which highlights recent developments in the field of drought forecasting and 

how advanced techniques such as LSTM can be used to improve forecast accuracy. have shown 

promise in improving prediction accuracy. Xu et al. (2022) proposed a hybrid ARIMA-LSTM 

model that achieved high prediction accuracy for different SPEI timescales, suggesting its 

suitability for long-term drought forecasting. 

Recent studies have further enhanced drought forecasting models by combining various 

techniques. Wu et al. (2021) developed a hybrid model integrating Wavelet Transformation 

(WT), it allows data to be analyzed at several levels of accuracy, which makes it very useful in 

discovering hidden patterns and changes in temporal data, ARIMA, and LSTM, outperforming 

individual models in predicting monthly precipitation data. These hybrid approaches leverage 

the strengths of different methodologies, resulting in improved predictive performance. 

Drought forecasting, particularly for different lead times, remains a challenging task (Hao et 

al., 2018). Various methods, including exponential smoothing and multiple linear regression, 

have been employed to tackle this challenge (De Livera et al., 2011; Zhou et al., 2020). Despite 

these advancements, there is still a need for models that can accurately predict drought indices 

like SPEI across diverse climatic conditions and temporal scales. 

This study aims to evaluate and compare the performance of SVM and ARIMA models in 

predicting SPEI values for three locations in Egypt: Nubariyah, Wadi Al Natrun, and Al Boseli. 

This research seeks to enhance our understanding of drought dynamics and improve predictive 

accuracy by leveraging traditional statistical methods and contemporary machine-learning 

techniques. The findings will provide valuable insights for agricultural water management and 

climate resilience planning in arid regions. Additionally, the study explores the potential of 

hybrid modeling approaches to refine drought forecasting capabilities 

MATERIAL AND METHODS 

Study Area and Dataset 

Beheira Governorate is located in northern Egypt and is characterized by an arid climate with 

limited and highly variable precipitation. The study focuses on three key locations: Nubariyah, 

30˚ 54` 21.16`` Wadi Al Natrun, 30˚ 35` 42.82`` and Al Boseli, 31˚ 20` 35.73``.  The dataset 

used in this study comprises monthly Standardized Precipitation Evapotranspiration Index 

(SPEI) values from January 1990 to December 2020. The data covers three locations in Egypt: 

Nubariyah, Wadi Al Natrun, and Al Boseli. The SPEI data was obtained from 

https://spei.csic.es/database.html, a reliable repository for climatic data. 
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The Standardized Precipitation Evapotranspiration Index (SPEI) calculation starts by collecting 

and preprocessing raw meteorological data, including precipitation and temperature, ensuring 

the handling of missing values and correcting anomalies. Potential Evapotranspiration (PET) 

was estimated based on temperature and latitude, according to Thornthwaite (1948) as follows: 

PET = 16 K(
10T

I
)m 

where, T is the monthly mean temperature (°C), I is a heat index, which is calculated as the sum 

of 12 monthly index values; m is a coefficient depending on:  

I: m = 6.75 × 10−7I3 − 7.71 × 10−5I2 + 1.79 × 10−2I + 0.492 

And K is a correction coefficient computed as a function of latitude and month, 

Calculate the difference between precipitation and PET for the desired period to reflect the 

water balance. Fit a probability distribution, typically the log-logistic distribution, to this 

difference data. Standardize the cumulative probability of the fitted distribution to obtain SPEI 

values. The SPEI for 1-month timescale was used to assess drought severity and duration. The 

SPEI values were categorized into various drought classes based on standard thresholds: 

• Mild Drought: -0.5 to -0.99 

• Moderate Drought: -1.0 to -1.49 

• Severe Drought: -1.5 to -1.99 

• Extreme Drought: ≤ -2.0 

ARIMA Model Building 

The ARIMA model was developed to forecast the Standardized Precipitation 

Evapotranspiration Index (SPEI) for three locations in Egypt: Nubariyah, Wadi Al Natrun, and 

Al Boseli. The SPEI data spanned from January 1990 to December 2020 and included monthly 

SPEI values sourced from https://spei.csic.es/database.html. Initial data preprocessing involved 

converting dates to Date Time format, handling missing values through interpolation, and 

creating lag features for capturing temporal dependencies.  

Model selection was based on the lowest Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) values. Table 1 presents the Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC) values for different ARIMA models evaluated for 

Nubariyah, Wadi Al Natrun, and Al Boseli. These criteria assess model fit, with lower values 

indicating a better-fitting model. In Nubariyah, the ARIMA (1,1,1) model has the lowest AIC 

(100.85) and BIC (108.95) values, suggesting that it is the best-fitting model among the 

evaluated options. Similarly, in Wadi Al Natrun and Al Boseli, the ARIMA (1,1,1) model also 

exhibits the lowest AIC and BIC values (104.55 and 112.65 for Wadi Al Natrun, 99.85 and 

107.95 for Al Boseli), confirming its superior fit for the data in these locations. These results 

highlight the ARIMA (1,1,1) model's robustness and consistency across different regions. 

Table 2 provides the parameter estimates for the ARIMA (1,1,1) model for Nubariyah, Wadi 

Al Natrun, and Al Boseli. The table includes the forecast for the autoregressive (AR) and 

moving average (MA) parameters and their standard errors, z-values (A measure of how many 

standard deviations an estimate falls from the mean. The z value is used to determine the 
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significance of a parameter in the model), and p-values (Expresses the probability associated 

with a given z value). For Nubariyah, the AR (1) parameter estimate is 0.65 with a z-value of 

6.50 (p < 0.000), and the MA (1) parameter estimate is -0.45 with a z-value of -3.75 (p < 0.000), 

both of which are statistically significant. The constant term is not significant (p = 0.618). In 

Wadi Al Natrun, the AR (1) parameter estimate is 0.60 with a z-value of 6.67 (p < 0.000), and 

the MA (1) parameter estimate is -0.40 with a z-value of -3.64 (p < 0.000), both significant. 

The constant term is not significant (p = 0.183). For Al Boseli, the AR (1) parameter estimate 

is 0.62 with a z-value of 5.64 (p < 0.000), and the MA (1) parameter estimate is -0.42 with a z-

value of -3.23 (p < 0.001), both significant. The constant term is not significant (p = 0.618). 

Table 1: AIC and BIC Values for Different ARIMA Models 

Location Model (p, d, q) AIC BIC 

Nubariyah 

ARIMA(1, 1, 0) 104.25 110.35 

ARIMA(1, 1, 1) 100.85 108.95 

ARIMA(2, 1, 0) 105.75 113.85 

ARIMA(0, 1, 1) 102.15 108.25 

Wadi Al Natrun 

ARIMA(1, 1, 0) 108.65 114.75 

ARIMA(1, 1, 1) 104.55 112.65 

ARIMA(2, 1, 0) 109.95 117.05 

ARIMA(0, 1, 1) 106.75 112.85 

Al Boseli 

ARIMA(1, 1, 0) 102.95 109.05 

ARIMA(1, 1, 1) 99.85 107.95 

ARIMA(2, 1, 0) 104.35 112.45 

ARIMA(0, 1, 1) 101.65 107.75 

where; p indicates the number of lag observations in the model, d represents the number of 

times the raw observations are differenced to make the time series stationery and q indicates 

the number of lagged forecast errors in the prediction equation. It represents the number of 

past forecast errors included in the model. 

Table 2: Parameter Estimates for ARIMA (1,1,1) Model 

Location Parameter Estimate Standard Error (±) z-value p-value 

Nubariyah 

AR(1) 0.65 0.10 6.50 0.000 

MA(1) -0.45 0.12 -3.75 0.000 

Constant 0.01 0.02 0.50 0.618 

Wadi Al Natrun 

AR(1) 0.60 0.09 6.67 0.000 

MA(1) -0.40 0.11 -3.64 0.000 

Constant 0.02 0.01 1.33 0.183 

Al Boseli 

AR(1) 0.62 0.11 5.64 0.000 

MA(1) -0.42 0.13 -3.23 0.001 

Constant 0.01 0.02 0.50 0.618 

These parameter estimates indicate that the ARIMA (1,1,1) model effectively captures the 

temporal dependencies in the SPEI data for all three locations, with statistically significant AR 

and MA parameters. The consistent results across different locations underscore the model's 

robustness in predicting SPEI values. 
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Model performance was validated by comparing forecasted values with actual data using Mean 

Absolute Error (MAE) and Mean Squared Error (MSE). The results indicated that the ARIMA 

(1,1,1) model consistently provided accurate forecasts, demonstrating lower MSE and MAE 

values than other models. This robust methodology highlights the effectiveness of ARIMA 

models in predicting SPEI for enhancing agricultural water management and drought mitigation 

strategies. 

SVM Model 

The SVM model was developed to forecast the Standardized Precipitation Evapotranspiration 

Index (SPEI) for three locations in Egypt: Nubariyah, Wadi Al Natrun, and Al Boseli, covering 

January 1990 to December 2020. The model employed the Radial Basis Function (RBF) kernel 

for its non-linear handling capability. The RBF kernel transforms the input data into a higher-

dimensional space using a Gaussian similarity measure, defined as K(x, x') = exp(-γ ||x - x'||²), 

where γ controls the spread of the Gaussian function. Hyperparameters, including the 

regularization parameter (C) which controls the balance between minimizing training errors 

and maintaining a simpler model to prevent overfitting, and gamma (γ), were tuned using grid 

search cross-validation to optimize model performance. The training focused on finding the 

optimal hyperplane that maximizes the margin between SPEI values.  

Model Evaluation for ARIMA and SVM 

Model performance was assessed using Mean Squared Error (MSE) and Mean Absolute Error 

(MAE). These metrics provided insights into both models' accuracy and magnitude of forecast 

errors. Additionally, parity plots were created to visually compare the actual versus predicted 

values, clearly assessing each model's predictive performance. These plots illustrated how 

closely the predicted values aligned with the actual values, with points closer to the 1:1 line 

indicating better accuracy. Through this comprehensive evaluation, the effectiveness of the 

ARIMA and SVM models in forecasting SPEI was rigorously analyzed. 

RESULTS AND DISCUSSION 

Summary Statistics of SPEI Values 

The summary statistics for the SPEI values across Nubariyah, Wadi Al Natrun, and Al Boseli 

from January 1990 to December 2020 are presented in Table 3. These descriptive statistics offer 

a comprehensive overview of each location's central tendency and variability of the SPEI data. 

The table includes the mean, standard deviation, minimum, maximum values, and percentage 

for each location, providing detailed insights into the central tendency and spread of the data. 

This thorough analysis aids in understanding the overall dryness trends and variability patterns 

across the different locations, which is essential for further time series analysis and model 

predictions. 

Nubariyah's mean SPEI value is -0.5268, indicating a general tendency towards dryness over 

30 years. The standard deviation is 1.0585, reflecting moderate variability in the data. The 

minimum SPEI value recorded is -3.4343, while the maximum is 2.0440, showing a substantial 

range in dryness and wetness conditions. The 25th percentile is -1.3475, the median is -0.5860, 

and the 75th percentile is 0.2364, indicating that the interquartile range (IQR) is primarily 

negative, consistent with the overall dryness trend. For Wadi Al Natrun, the mean SPEI value 
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of -0.5677 also suggests a tendency towards dryness. The standard deviation of 1.0770 indicates 

variability like that observed in Nubariyah. The SPEI values range from -2.8689 to 2.9490. The 

25th percentile is -1.4214, the median is -0.6478, and the 75th percentile is 0.1388, reflecting 

that the data distribution is skewed towards negative values, indicative of dry conditions. In Al 

Boseli, with a mean SPEI value of -0.5631 and a standard deviation of 1.0990, the location 

shows similar dryness and variability patterns as the other two locations. The minimum and 

maximum SPEI values are -3.0383 and 2.4639, respectively. The 25th percentile is -1.3954, the 

median is -0.7027, and the 75th percentile is 0.0886, indicating that the interquartile range is 

skewed towards negative values, consistent with the overall dryness trend observed in the 

region.  

Table 3: Summary Statistics of SPEI Values 

Location Mean Min Max Std Dev 

Percentile 

25% 50% 75% 

Nubariyah -0.5268 -3.4343 2.0440 1.0585 -1.3475 -0.5860 0.2364 

Wadi Al Natrun -0.5677 -2.8689 2.9490 1.0770 -1.4214 -0.6478 0.1388 

Al Boseli -0.5631 -3.0383 2.4639 1.0990 -1.3954 -0.7027 0.0886 

Overall, the summary statistics indicate that all three locations have experienced a general 

tendency towards dryness over the study period, with varying degrees of variability. The central 

tendency measures (mean and median) and the spread (standard deviation and IQR) provide 

important context for understanding the SPEI values, which are crucial for further time series 

analysis and model prediction. 

Time Series Decomposition Plots 

The time series decomposition analysis of SPEI values for the three locations—Nubariyah, 

Wadi Al Natrun, and Al Boseli—provides insights into the underlying patterns within the data. 

Each location's SPEI values were decomposed into four components: observed, trend, seasonal, 

and residual (figures 1, 2, and 3). For all three locations, the trend component indicates a long-

term decline in SPEI values, suggesting increasing dryness over the 30 years. The seasonal 

component captures repeating patterns at a yearly interval, indicating regular fluctuations due 

to seasonal climatic effects. After removing the trend and seasonal components, the residual 

component shows random noise or irregular variations. 

For Nubariyah, the observed component represents the original SPEI data. The trend component 

reveals a long-term decline in SPEI values, indicating increasing dryness over the 30 years. The 

seasonal component, accounting for approximately 25% of the variance, captures repeating 

patterns yearly, indicating regular fluctuations due to seasonal climatic effects. The residual 

component, representing about 15% of the variance, shows random noise or irregular variations 

after removing the trend and seasonal components. 

In Wadi Al Natrun, the decomposition reveals similar insights. The trend component shows a 

long-term trend accounting for approximately 40% of the variance in SPEI values, while the 

seasonal component highlights recurring annual patterns and contributes around 30% to the 

total variance. The residual component captures about 20% of the variance, indicating 

irregularities and noise in the data. 
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Al Boseli's decomposition results also show the observed, trend, seasonal, and residual 

components. The trend indicates a significant decline in SPEI values over time, explaining 

about 35% of the variance. The seasonal component, contributing approximately 30%, 

identifies consistent annual cycles. The residual component, representing about 20% of the 

variance, captures the random noise.  

The x-axis represents the timeline monthly, starting in January of the first year in the dataset 

and continuing sequentially. Each data point corresponds to that month's SPEI value. 

Overall, the decomposition analysis for all three locations helps to understand the distinct and 

common patterns in SPEI values, including long-term trends and seasonal effects. This detailed 

breakdown aids in identifying the different factors contributing to SPEI variability in each 

location. The trend and seasonal components together explain 50-60% of the total variance, 

while the residual noise accounts for 15-20%. 

 
Fig. (1): Time Series Decomposition of SPEI Values for Nubariyah. 

 

Fig. (2): Time Series Decomposition of SPEI Values for Wadi Al Natrun. 
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Fig. (3): Time Series Decomposition of SPEI Values for Al Boseli. 

Best ARIMA Models Based on Cross-Validation 

Table 4 presents the optimal ARIMA model orders (p, d, q) determined through cross-validation 

for the Nubariyah, Wadi Al Natrun, and Al Boseli locations. The table includes the Mean 

Absolute Error (MAE) and the Standard Deviation (Std) for each location, which are vital 

model performance indicators. For Nubariyah, the best ARIMA model identified is 

ARIMA(1,1,1), achieving a Mean Absolute Error (MAE) of 0.834 and a Standard Deviation 

(Std) of 0.158, indicating a high level of accuracy and reliability with relatively low prediction 

error and variability. In Wadi Al Natrun, the optimal ARIMA model is also ARIMA(1,1,1), 

with an MAE of 0.835 and a Std of 0.184. The slightly higher standard deviation compared to 

Nubariyah suggests marginally more variability in the model's predictions, but the MAE 

remains very low, demonstrating effective performance. For Al Boseli, the best ARIMA model 

is ARIMA(1,1,1), with an MAE of 0.860 and a Std of 0.147. While the MAE is slightly higher 

than in the other two locations, the standard deviation is lower, indicating consistent 

performance with less prediction variability. Overall, the ARIMA(1,1,1) model consistently 

performs well across all three locations, with low MAE values ranging from 0.834 to 0.860 and 

standard deviations indicating stable performance. The uniformity in the optimal ARIMA order 

suggests that similar temporal dynamics are present in the SPEI values across these regions, 

allowing the ARIMA(1,1,1) model to capture the underlying patterns and provide accurate 

forecasts effectively. 

Table 4: Best ARIMA Model for SPEI Values in Nubariyah, Wadi Al Natrun, and Al Boseli  

Location 
Best ARIMA 

Order 

Mean Absolute Error 

(MAE) 

Standard 

Deviation (Std) 

SPEI_1_Nubariyah (1, 1, 1) 0.834 0.158 

SPEI_1_Wadi Al Natrun (1, 1, 1) 0.835 0.184 

SPEI_1_Al Boseli (1, 1, 1) 0.860 0.147 
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Comparative Analysis of SPEI Forecasts: SVM vs. ARIMA Models 

Model Performance  

Table 5 compares the performance of the SVM and ARIMA models in predicting SPEI values 

for Nubariyah, Wadi Al Natrun, and Al Boseli, using the Mean Squared Error (MSE) as the 

evaluation metric. In Nubariyah, the ARIMA model outperforms the SVM model, with an MSE 

of 1.7499 compared to the SVM model's MSE of 1.7746, representing a 1.4% improvement in 

accuracy, indicating that the ARIMA model more effectively captures the underlying patterns 

in the SPEI data for Nubariyah. In Wadi Al Natrun, the performance difference is more 

pronounced, with the ARIMA model achieving an MSE of 2.0735, which is 14% lower than 

the SVM model's MSE of 2.4113, demonstrating the ARIMA model's superior ability to predict 

SPEI values in this location. For Al Boseli, the ARIMA model also shows better predictive 

performance, with an MSE of 1.8033 compared to the SVM model's MSE of 2.0844, 

representing a 13.5% improvement in accuracy, highlighting the ARIMA model's robustness 

and reliability in forecasting SPEI values for Al Boseli. Overall, the ARIMA model consistently 

achieves lower MSE values across all three locations, demonstrating its superior performance 

in predicting SPEI values compared to the SVM model. The reduction in MSE, ranging from 

1.4% to 14%, underscores the ARIMA model's effectiveness in capturing the temporal 

dependencies and patterns in the SPEI data. These results suggest that the ARIMA model is a 

more suitable choice for SPEI forecasting in these regions, providing more accurate and reliable 

predictions than the SVM model. 

Table 5: Model Performance Comparison (MSE) for SVM and ARIMA Models 

Location 
MSE 

SVM ARIMA 

Nubariyah 1.7746 1.7499 

Wadi Al Natrun 2.4113 2.0735 

Al Boseli 2.0844 1.8033 

Time series actual vs predicted 

Time series plots were used to compare the actual SPEI values with those predicted by the SVM 

and ARIMA models for Nubariyah, Wadi Al Natrun, and Al Boseli. Each subplot displays the 

actual SPEI values (solid line) alongside the predictions from the SVM model (dashed line) and 

the ARIMA model (dotted line), as shown in Figure 4. In Nubariyah, the ARIMA model's 

predictions closely align with the actual values, demonstrating superior performance over the 

SVM model. In Wadi Al Natrun, the ARIMA model's predictions are more accurate, as 

evidenced by their tighter alignment with the actual values compared to the SVM model. 

Similarly, for Al Boseli, the ARIMA model consistently produces predictions closer to the 

actual SPEI values, indicating better forecasting accuracy than the SVM model. Overall, the 

ARIMA model outperforms the SVM model in capturing the underlying patterns in the SPEI 

data across all three locations, showcasing its superior predictive capabilities. 

Parity Plots Comparing Actual vs. Predicted Values 

Parity plots were generated for each location to visually assess the predictive accuracy of the 

SVM and ARIMA models, comparing actual SPEI values against predicted values from both 

models. The 1:1 line in these plots indicates perfect predictions, with points closer to this line 

representing better predictive performance.  



AGRICULTURAL IRRIGATION AND DRAINAGE ENGINEE 

 

MJAE ـ October 2024                                                                                                                     273 

 

Fig. (4): Comparison of Actual SPEI 1 Values with SVM and ARIMA Predictions for 

Nubariyah, Wadi Al Natrun, and Al Boseli. 

For Nubariyah, the ARIMA model's predictions are notably closer to the actual values than the 

SVM model's predictions, as evidenced by a higher concentration of points near the 1:1 line 

(Figure 5). This suggests that the ARIMA model provides superior accuracy in forecasting SPEI 

values for this location, a conclusion further supported by the Mean Squared Error (MSE) 

values: 1.7499 for ARIMA and 1.7746 for SVM. 
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Fig. (5): Parity Plot of Actual vs. Predicted SPEI Values for Nubariyah, Wadi Al 

Natrun, and Al Boseli Using SVM and ARIMA Models. 

Similar trends are observed in the parity plots for Wadi Al Natrun and Al Boseli. In Wadi Al 

Natrun, the ARIMA model again outperforms the SVM model, with its predictions more tightly 
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clustered around the 1:1 line and an MSE of 2.0735, compared to 2.4113 for the SVM model. 

For Al Boseli, the ARIMA model consistently demonstrates higher predictive accuracy, with 

points closer to the 1:1 line and an MSE of 1.8033 versus 2.0844 for the SVM model. Overall, 

the parity plots for all three locations—Nubariyah, Wadi Al Natrun, and Al Boseli—clearly 

indicate that the ARIMA model provides more accurate predictions of SPEI values than the 

SVM model. The lower MSE values for ARIMA across all locations underscore its 

effectiveness in capturing the underlying patterns in the SPEI data, making it a more reliable 

tool for climatic forecasting in these regions. 

CONCLUSION 

➢ This study aimed to compare the predictive performance of Support Vector Machines (SVM) 

and AutoRegressive Integrated Moving Average (ARIMA) models in forecasting the 

Standardized Precipitation Evapotranspiration Index (SPEI) for three locations in Egypt: 

Nubariyah, Wadi Al Natrun, and Al Boseli. The analysis, which included time series 

decomposition and model evaluation using Mean Squared Error (MSE) and Mean Absolute 

Error (MAE), revealed that the ARIMA models consistently outperformed the SVM models 

across all three locations. The ARIMA(1,1,1) model demonstrated lower MSE and MAE 

values, with MSE reductions ranging from 1.4% to 14% compared to the SVM models, 

highlighting ARIMA’s superior predictive accuracy and robustness. 

➢ Additionally, the study found that the ARIMA(1,1,1) model was the best fit for all three 

locations, indicating similar underlying temporal dynamics of SPEI values across these 

regions. The decomposition of SPEI values into trend, seasonal, and residual components 

provided further insights: the trend components tended to increase dryness over the 30-year 

period, while the seasonal components highlighted regular annual fluctuations. 

➢ Accurate forecasting of SPEI values is critical for effective agricultural water management. 

The ARIMA model’s superior performance offers a reliable tool for anticipating drought 

conditions and planning water usage. Implementing ARIMA-based forecasts in water 

management strategies can lead to more informed decision-making, ensuring sustainable 

water use and enhancing agricultural resilience to climatic variability. Thus, the 

ARIMA(1,1,1) model is recommended for forecasting SPEI values in Nubariyah, Wadi Al 

Natrun, and Al Boseli. Future research should explore advanced models, such as Recurrent 

Neural Networks (RNN), to further enhance forecasting accuracy and consider expanding 

the analysis to additional regions and more recent data to validate and extend the findings. 
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 (SPEI) المعياري النتح-الهطول والبخر بمؤشر التنبؤ

 مقارنة  ةدراس :(ARIMA) ( وSVMنماذج ) باستخدام 

  2، سلوى حسن عبده  1عمرو مسعد

 مصر.   -  القاهرة   -  جامعة عين شمس   -   كلية الزراعة   -  الزراعية قسم الهندسة   - استاذ مساعد 1
 مصر.   -  القاهرة   -  جامعة عين شمس   -   كلية الزراعة   -  الزراعية قسم الهندسة   -  -  مدرس 2

 

 المجلة المصرية للهندسة الزراعية ©

 

 الكلمات المفتاحية: 

  بالسلاسل التنبؤ ؛بالجفاف التنبؤ

 الزراعية.  المياه إدارة ؛الزمنية

 الملخص العربي 

التنبؤ بمؤشر الهطول والبخر الدراسة إلى تقييم دقة   المعياريالنتح  -تهدف هذه 

(SPEI) نم مناطق زراعية  (ARIMA)و   (SVM) ذج  اباستخدام  في ثلاث 

والبو النطرون،  وادي  النوبارية،  مصر:  في  بـصيمهمة  الدقيق  التنبؤ  يعد   لي. 

SPEI   الزراعي الفعال، خاصة في المناطق أمرًا حيويًا لإدارة المياه والتخطيط

النماذج   وتقييم  الزمنية  السلاسل  تحليل  يتضمن  شامل  تحليل  إجراء  تم  القاحلة. 

التربيعي الخطأ  متوسط  وباستخدام  نماذج.  تفوق  النتائج   ARIMA أظهرت 

نماذج على  نموذج SVM باستمرار  أظهر  حيث  المواقع.  جميع   في 

ARIMA(1,1,1) قيمة في  انخفاض  فائقة، مع  تنبؤية  بين   MSE دقة  تتراوح 

 قيمة ARIMA ففي النوبارية، حقق نموذج .SVM مقارنة بنماذج  %14و  % 1.4

MSE   لنموذج  1.7746مقارنة بـ    1.7499قدرها SVM .  ،في وادي النطرون

لنموذج التربيعي  الخطأ  متوسط  من ARIMA 2.0735 بلغ  بكثير  أقل  وهو   ،

 قيمة ARIMA لي، سجل نموذجيص، بينما في البو SVM لنموذج  2.4113

MSE   لنموذج  2.0844مقابل    1.8033قدرها SVM   يؤكد الأداء  . وهو ما

ايضاً كشف  وقد    فعاليته في توقع ظروف الجفاف.و ARIMA المتفوق لنموذج

الثلاثين  SPEI تحليل قيم عن اتجاه طويل المدى نحو زيادة الجفاف على مدار 

المستقبلية   الأبحاث  على  ينبغي  المنتظمة.  السنوية  التقلبات  إلى  بالإضافة  عامًا، 

المتكررة العصبية  الشبكات  مثل  متقدمة  نماذج  دقة  (RNN) استكشاف  لتعزيز 

التنبؤ بشكل أكبر، وتوسيع التحليل ليشمل مناطق إضافية تحتوي على بيانات أحدث  

الموارد   وإدارة  بالجفاف  التنبؤ  تحسين  وبالتالي  النتائج،  هذه  صحة  من  للتحقق 
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