APPLYING GERMICIDAL ULTRAVIOLET IN CHICKEN MANURE DISINFECTION FOR PROMOTING AGRICULTURAL SUSTAINABILITY

Document Type : Original Article

Authors

1 Assoc. Prof., Ag. Eng. Dept., Fac. of Ag., Zagazig U., Zagazig, Egypt.

2 Prof. Emeritus, Dept. of Ag. & Biosystems Eng., Fac. of Ag. (El-Shatby), Alex. U., Alex., Egypt.

3 Assoc. Prof., Dept. of Ag. & Biosystems Eng., Fac. of Ag. (El-Shatby), Alex. U., Alex., Egypt.

Abstract

Chicken manure is a valuable resource when properly managed, while mismanagement of manure often results in serious challenges and public health worries. The environmentally friendly management of chicken manure is critical for agricultural sustainability. One of the strategies for promoting sustainable management of chicken manure is the application of the UV technique. The present research was carried out to apply and evaluate the performance of a germicidal ultraviolet (UV-C) disinfection system as a sustainable technology for disinfecting chicken manure. The performance of a UV-C disinfection system was studied as a function of changes in UV-C intensity (980, 1470, and 1960 µW/cm2) and exposure time to UV-C (5, 10, 15, 30, 60, and 90 min). Performance evaluation of the UV-C system was carried out in terms of microbial count, disinfection efficiency, specific energy, and disinfection cost. Experimental results revealed that the optimal limits for reducing TBC, coliform, and E. coli count (1.5, 2.8, and 1.8 log CFU g−1), disinfection efficiency (96.58, 99.84, and 98.40%), specific energy (0.33, 2.93, and 0.16 kW.h/kg), and disinfection cost (0.024, 0.218, and 0.012 USD/kg) were achieved at a UV-C intensity of 1960 µW/cm2 and exposure times of 10, 90, and 5 minutes, respectively. According to this study, UV-C disinfection provides an eco-sustainable alternative to chemical composites for controlling microbiological contamination in chicken manure.

Keywords

Main Subjects


AOAC, Association of Official Analytical Chemists (1990). Official Methods of Analysis (15th Ed.). Washington.
AOAC, Association of Official Analytical Chemists (2005). Official Methods of Analysis (18th Ed.). AOAC INTERNATIONAL. Gaithersburg. MD.
APHA, American Public Health Association (1992). Standard Methods for the Examination of Dairy Products. Washington. DC.
APHA, American Public Health Association (2005). Standard Methods for Examination of Water and Waste Water. 21st Ed. Washington. DC.
Bailey, M. et al. (2022) ‘Effects of common litter management practices on the prevalence of Campylobacter jejuni in broilers’, Animals, 12(7), 858. Doi:10.3390/ani12070858.
Beck, S. et al. (2016) ‘Comparison of UV-induced inactivation and RNA damage in MS2 phage across the germicidal UV spectrum’, Applied and Environmental Microbiology, 82(5),1468-1474. Doi:10.1128/AEM.02773-15.
Bhattacharjee, C., Saxena, V. K. and Dutta, S. (2019) ‘Novel thermal and non-thermal processing of watermelon juice’, Trends in Food Science and Technology, 93, 234-243. Doi:08101xy62-1104-y-https-doi-org.mplbci.ekb.eg/10.1016/j.tifs.2019.09.015.
Björn, L. O. (2015) ‘Ultraviolet-A, B, and C’, UV4Plants Bulletin, 1,17-18. Doi:10.19232/uv4pb.2015.1.12.
Bolan, N. et al. (2010) ‘Uses and management of poultry litter’, World's Poultry Science Journal, 66 (4), 673-698. Doi:10.1017/S0043933910000656.
Bolton, J. R. (2010) Ultraviolet applications handbook. Edmonton AB: ICC Lifelong Learn Inc.
Chen, Z. and Jiang, X. (2014) ‘Microbiological safety of chicken litter or chicken litter-based organic fertilizers: a review’, Agriculture, 4(1), 1-29. Doi:10.3390/agriculture4010001.
Dai, T. et al. (2012) ‘Ultraviolet C irradiation: an alternative antimicrobial approach to localized infections’, Expert Review of Anti-infective Therapy, 10(2), 185-195. Doi:10.1586/eri.11.166.
Del Valle, J. et al. (2020) ‘UV radiation increases phenolic compound protection but decreases reproduction in Silene littorea’, PloS one, 15(6), e0231611. Doi:10.1371%2Fjournal.pone.0231611.
Delorme, M. et al. (2020) ‘Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods’, Trends in Food Science and Technology, 102, 146-154. Doi:10.1016/j.tifs.2020.06.001.
Duan, Y. et al. (2019) ‘Response of bamboo biochar amendment on volatile fatty acids accumulation reduction and humification during chicken manure composting’, Bioresource Technology, 291, 121845. Doi:10.1016/j.biortech.2019.121845.
Dunn, L. et al. (2022) ‘The prevalence and concentration of Salmonella enterica in poultry litter in the southern United States’, Plos one, 17(5), e0268231. Doi:10.1371/journal.pone.0268231.
Ebrahim, R. et al. (2022) ‘Effect of ultraviolet radiation on molecular structure and photochemical compounds of Salvia hispanica medical seeds’, AIMS Biophysics, 9(2), 172-181. Doi:http://dx.doi.org/10.3934/biophy.2022015.
Esua, O. et al. (2020) ‘A review on individual and combination technologies of UV-C radiation and ultrasound in postharvest handling of fruits and vegetables’, Processes, 8(11), 1433. Doi:10.3390/pr8111433.
George, F. et al. (2018) ‘Development of Organic fish feeds: Case study of poultry droppings and pig feces as replacement for soybean meal in practical diets for Nile tilapia, Oreochromis niloticus (L.)’, In Ecological and Organic Agriculture Strategies for Viable Continental and National Development in the Context of the African Union's Agenda 2063. Scientific Track Proceedings of the 4th African Organic Conference; November 5-8; Saly Portudal, Senegal, 121-128.
Gržinić, G. et al. (2023) ‘Intensive poultry farming: A review of the impact on the environment and human health’, Science of the Total Environment, 858, 160014. Doi:10.1016/j.scitotenv.2022.160014.
Guan, T. Y. and Holley, R. A. (2003) ‘pathogen survival in swine manure environments and transmission of human enteric illness—a review’, Journal of Environmental Quality, 32(2), 383-392. Doi:10.2134/jeq2003.3830.
He, S. et al. (2021) ‘Photodegradation of dissolved organic matter of chicken manure: Property changes and effects on Zn2+/Cu2+ binding property’, Chemosphere, 276, 130054. Doi:10.1016/j.chemosphere.2021.130054.
Hidalgo, D., Corona, F. and Martín-Marroquín, J. M. (2022) ‘Manure biostabilization by effective microorganisms as a way to improve its agronomic value’, Biomass Conversion and Biorefinery, 12(10), 4649-4664. Doi:10.1007/s13399-022-02428-x.
Hijnen, W. A., Beerendonk, E. F. and Medema, G. J. (2006) ‘Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo) cysts in water: A review’, Water Research, 40(1), 3-22. Doi:10.1016/j.watres.2005.10.030.
Hu, Y., Cheng, H. and Tao, S. (2017) ‘Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation’, Environment International, 107, 111-130. Doi:10.1016/j.envint.2017.07.003.
Hunter, E. et al. (2023) ‘A pilot study to investigate the antimicrobial activity of pulsed UVA and UVC’, Aerobiology, 1(2), 82-97. Doi:10.3390/aerobiology1020007.
Koca, N., Urgu, M. and Saatli, T. E. (2018). ‘Ultraviolet light applications in dairy processing’, Technological approaches for novel applications in dairy processing, IntechOpen. Doi:10.5772/intechopen.74291.
Koutchma, T., Forney, L.J. and Moraru, C. I. (2009) Ultraviolet light in food technology: principles and applications, Boca Raton, Florida: CRC Press, 296. Doi:10.1201/9781315112862.
Kowalski, W. (2009) Ultraviolet germicidal irradiation handbook: UVGI for air and surface disinfection, New York, NY: Springer science & business media. Doi:10.1007/978-3-642-01999-9.
Kumar, A. et al. (2021) ‘Impact of UV-C irradiation on solubility of Osborne protein fractions in wheat flour’, Food Hydrocolloids, 110, 105845. Doi:10.1016/j.foodhyd.2020.105845.
Li, Y. et al. (2024) ‘Inactivation of pathogenic microorganisms in water by electron beam excitation multi-wavelength ultraviolet irradiation: Efficiency, influence factors and mechanism’, Journal of Environmental Management, 350, 119597. Doi:10.1016/j.jenvman.2023.119597.
Manyi-Loh, C. et al. (2016) ‘An overview of the control of bacterial pathogens in cattle manure’, International Journal of Environmental Research and Public Health, 13(9), 843. Doi:10.3390/ijerph13090843.
McKeen, L. (2012) ‘Introduction to food irradiation and medical sterilization’, The Effect of sterilization on plastics and elastomers, 1-40. Doi:10.1016%2FB978-1-4557-2598-4.00001-0.
Muhammad, J. et al. (2020) ‘Application of poultry manure in agriculture fields leads to food plant contamination with potentially toxic elements and causes health risk’, Environmental Technology and Innovation, 19, 100909. Doi:10.1016/j.eti.2020.100909.
Nerandzic, M. M., Fisher, C. W. and Donskey, C. J. (2014) ‘Sorting through the wealth of options: comparative evaluation of two ultraviolet disinfection systems’, PLoS one, 9(9), e107444. Doi:10.1371/journal.pone.0107444.
Nguyen, X. et al. (2022) ‘Effect of ultraviolet radiation on reducing Airborne Escherichia coli carried by poultry litter particles’, Animals, 12(22), 3170. Doi:10.3390/ani12223170.
Nicklin, J. et al. (1999) Instant notes in microbiology. BIOS Sciencetific Publishers. 342.
Niño-Gomez, J. et al. (2021) ‘Ultraviolet radiation to control bacteria in oil well injection water’, CT&F-Ciencia, Tecnología y Futuro, 11(1), 5-9. Doi:10.29047/01225383.191
Obasa, S. O., Alegbeleye, W. O. and Amole, J. B. (2009) ‘Dried poultry manure meal as a substitute for soybean meal in the diets of African Catfish (Clarias gariepinus) (Burchell 1822) advanced fry’, Turkish Journal of Fisheries and Aquatic Sciences, 9(1), 121-124.
Okrend, A. J., Rose, B. E. and Lattuada, C. P. (1990) ‘Use of 5-bromo-4-chloro3-indoxyle-B-D-glucuronide in Mac Conkey Sorbitol Agar to aid in the isolation of Escherichia coli O157: H7 from ground beef’, Journal of Food Protection, 53, 941–943.
Oni, R. et al. (2013) ‘The effect of UV radiation on survival of Salmonella enterica in dried manure dust’, In Proceedings of the International Association for Food Protection Annual Meeting, Charlotte, NC, USA, 30.
Paul, A. et al. (2012) ‘UV irradiation of natural organic matter (NOM): impact on organic carbon and bacteria’, Aquatic Sciences, 74, 443-454. Doi:10.1007/s00027-011-0239-y.
Rahman, M. et al. (2022) ‘Current state of poultry waste management practices in Bangladesh, environmental concerns, and future recommendations’, Journal of Advanced Veterinary Research, 9(3), 490-500. Doi:10.5455%2Fjavar.2022.i618.
Ramos, T. et al. (2021) ‘Survival and persistence of foodborne pathogens in manure-amended soils and prevalence on fresh produce in certified organic farms: a multi-regional baseline analysis’, Frontiers in Sustainable Food Systems, 5, 674767. Doi:10.3389/fsufs.2021.674767.
Rasool, A. et al. (2023) ‘Effects of poultry manure on the growth, physiology, yield, and yield-related traits of maize varieties’, ACS Omega, 8 (29), 25766–25779. Doi:10.1021%2Facsomega.3c00880.
Ravindran, B. et al. (2017) ‘Assessment of nutrient quality, heavy metals and phytotoxic properties of chicken manure on selected commercial vegetable crops’, Heliyon, 3(12), 00493. Doi:10.1016/j.heliyon.2017.e00493.
Semenov, M. et al. (2021) ‘Does fresh farmyard manure introduce surviving microbes into soil or activate soil-borne microbiota?’ Journal of Environmental Management, 294, 113018. Doi:10.1016/j.jenvman.2021.113018.
Shahabi-Ghahfarrokhi, I., Goudarzi, V. and Babaei-Ghazvini, A. (2019) ‘Production of starch based biopolymer by green photochemical reaction at different UV region as a food packaging material: Physicochemical characterization’, International Journal of Biological Macromolecules, 122, 201-209. Doi:10.1016/j.ijbiomac.2018.10.154.
Sharrer, M. et al. (2005) ‘Inactivation of bacteria using ultraviolet irradiation in a recirculating salmonid culture system’, Aquacultural Engineering, 33(2), 135-149. Doi:10.1016/j.aquaeng.2004.12.001.
Shinde, S., Lee, L. H. and Chu, T. (2021) ‘Inhibition of biofilm formation by the synergistic action of EGCG-S and antibiotics’, Antibiotics, 10(2), 102.
Singh, P. et al. (2018) ‘Poultry waste management’, International Journal of Current Microbiology and Applied Sciences, 7(8), 701-712. Doi:10.20546/ijcmas.2018.708.077.
Spiehs, M. J. and Goyal, S. M. (2007) ‘Best management practices for pathogen control in manure management Systems’, University of Minnesota Extension: St. Paul, MN, USA, M1211.
Tawfik, A. et al. (2023) ‘Bioenergy production from chicken manure: a review’, Environmental Chemistry Letters, 21, 2707-2727. Doi:10.1007/s10311-023-01618-x.
Tchonkouang, R. et al. (2023) ‘UV-C light: A promising preservation technology for vegetable-based nonsolid food products’, Foods, 12(17), 3227. Doi:10.3390/foods12173227.
Usman, S. et al. (2019) ‘Utilization of poultry waste as feed and supplementary feed for fish growth’, Journal of Applied Sciences and Environmental Management, 23(4), 627-631. Doi:10.4314/jasem.v23i4.8
Wang, J. et al. (2023) ‘A systematic review and meta-analysis of the sources of Salmonella in poultry production (pre-harvest) and their relative contributions to the microbial risk of poultry meat’, Poultry Science, 102(5), 102566. Doi:10.1016/j.psj.2023.102566.
Wang, L. et al. (2013) ‘Analysis of ultraviolet radiation in Central China from observation and estimation’, Energy, 59, 764-774. Doi:10.1016/j.energy.2013.07.017.
Xu, P. et al. (2005) ‘Impact of environmental factors on efficacy of upper-room air ultraviolet germicidal irradiation for inactivating airborne mycobacteria’, Environmental Science and Technology, 39(24), 9656-9664. Doi:10.1021/es0504892
Yang, J. et al. (2019) ‘Effectiveness of an ultraviolet-C disinfection system for reduction of healthcare-associated pathogens’, Journal of Microbiology, Immunology and Infection, 52(3), 487-493. Doi:10.1016/j.jmii.2017.08.017.
Yemmireddy, V., Adhikari, A. and Moreira, J. (2022) ‘Effect of ultraviolet light treatment on microbiological safety and quality of fresh produce: An overview’, Frontiers in Nutrition, 9, 871243. Doi:10.3389/fnut.2022.871243.
Zayadi, R. A. (2021) ‘Current outlook of livestock industry in Malaysia and ways towards sustainability’, Journal of Sustainable Natural Resources, 2(2), 1-11. Doi:10.30880/jsunr.2021.12.02.001.