PRODUCTION THE BRIQUETTES FROM MIXTURE OF AGRICULTURAL RESIDUES AND EVALUATION ITS PHYSICAL, MECHANICAL AND COMBUSTION PROPERTIES

Document Type : Original Article

Authors

1 Assoc. Prof. in Ag. and Biosystem Eng., Fac. of Ag., Menoufia U., Shebin Elkom, Menoufia, Egypt.

2 Asist. Prof. in Ag. and Biosystem Eng., Fac. of Ag., Menoufia U., Shebin Elkom, Menoufia, Egypt.

Abstract

Nowadays, climate change is becoming an important issue mainly because of the energy consumption of human activities. The objective of this study is producing biomass energy using agricultural wastes for briquettes production with high physical, mechanical properties and high calorific value.  The study is divided into two parts: Firstly, describing the manufacturing process of briquettes from a mixture of chopped residues in varying proportions including rice straw, sugar cane bagasse, banana peels, coconut shells, and cattle manure to produce eco-friendly briquettes. Secondly, estimate the properties of produced briquettes such as physical, mechanical, and combustion characteristics, including relaxed density, calorific value, proximal analysis, and ultimate analysis to determine quality of produced briquettes. The results showed that the moisture content ranged between 6.02 and 9.52% (w.b.), density of the produced briquettes was found in range of 1040.2 to 1538.8 kg/m3, compressive strength ranged from 4.59 to 24.07 MPa, durability ranged from 86.43 to 99.75%, water resistance ranged from 77.28 to 92.48 %, calorific value ranged from 16.22 to 20.9 MJ/kg and burning rate ranged from 3.62 to 6.36 g/min with ignition time raged from 2.95 to 4.35 min. The volatile matter in the briquettes ranged from 68.5 to 75.8%. the high fixed carbon was 24.62%. The high-quality of produced briquettes were obtained from sugar cane bagasse sample that were, 24.07 MPa compressive strength, 18.71 MJ/kg calorific value, 6.36 g/min burning rate, 72.3 volatile matter, 99.8 % briquettes durability and 1538.8 kg/m3 bulk density. While the high calorific value was 20.47 MJ/kg.

Keywords

Main Subjects


Abdoli, M.A., Golzary, A., Hosseini, A and Sadeghi, P. (2018). Biomass Densification. In: Wood Pellet Renew. Source Energy Prod. Consum., Cham: Springer International Publishing; 40 (2): 33–46. Doi: 10.1007/ 978-3-319-74482-7_2.
Adap, P., Tabil, L and Schoenau, G. (2009). Compaction characteristics of barley, canola, oat and wheat straw. Biosyst. Eng. 104(3): 335–344.
Adeleke, A. A., Odusote, J. K., Ikubanni, P.P., Olabisi, A. S and Nzerem, P. (2022). Briquetting of subbituminous coal and torrefied biomass using bentonite as inorganic binder. Sci. Rep. 12 (1): 1–11. Doi.org/10.1038/s41598-022-12685-5.
Adu-Poku, K. A., Appiah, D., Asosega, K. A., Derkyi, N. A., Uba, F., Kumi, E.N., Akowuah, E., Akolgo, G. A and Gyamfi, D. (2022). Characterization of fuel and mechanical properties of charred agricultural wastes: Experimental and statistical studies. Energy Rep. 8 (3): 4319–4331. http://dx.doi.org/10.1016/j.egyr. 2022.03.015.
Ajimotokan, H. A., Ehindero, A. O., Ajao, K. S., Adeleke, A. A., Ikubanni, P. P and Shuaib- Babata, Y. L. (2019). Combustion characteristics of fuel briquettes made from charcoal particles and sawdust agglomerates. Sci. Afr. 6, e00202. http://dx. doi.org/10.1016/j.sciaf.2019.e00202.
Akolgo, G. A., Awafo, E., Essandoh, E.O., Owusu, P.A., Uba, F and Adu-poku, K. A. (2021). Assessment of the potential of charred briquettes of sawdust, rice and coconut husks: Using water boiling and user acceptability tests. Sci. Afr. e00789. http://dx.doi.org/10.1016/j.sciaf.2021.e00789.
ASAE Standards. S269.4: (2003). Cubes, pellets, and crumbles – definitions and methods for determining density, durability and moisture content. St. Joseph, MI: ASABE.
ASTM D3174-12, (2012). Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D3174-12.
ASTM D3175-18, (2018). Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D3175-18.
Ayse Özyuguran and Serdar Yaman (2017). Prediction of Calorific Value of Biomass from Proximate Analysis. 3rd International Conference on Energy and Environment Research, ICEER 2016, 7-11 September 2016, Barcelona, Spain. Energy Procedia 107 (2017) 130 – 136
Bilgin S., H. Y lmaz1., A. Koçer., M. Acar., M. Dok and S. Alparslan (2019). Briquetting of Rice Straw and Determination of Briquette Physical Properties, XXXVI CIOSTA & CIGR Section V Conference 26 – 28 May 2015 Saint Petersburg, the Russian Federation.
Bill Vaneck, B., Petros J. A., Olivier, T. S., Evangelos, I. S and Jean, G, T. (2022) Economic analysis of biomass briquettes made from coconut shells, rattan waste, banana peels and sugarcane bagasse in households cooking. International Journal of Energy and Environmental Engineering.
 Bot, B.V., Sosso, O.T., Tamba, J.G., Lekane, E., Bikai, J and Ndame, M.K. (2021). Preparation and characterization of biomass briquettes made from banana peels, sugarcane bagasse, coconut shells and rattan waste. In: Biomass Conversion and Biorefinery. http://dx.doi.org/10.1007/s13399-021-01762-w.
Central Agency for Public Mobilization and statistics (2023). Annual Bulletin of statistical crop area and plant production.
Chungcharoen, T and Srisang, N. (2020). Preparation and characterization of fuel briquettes made from dual agricultural waste: cashew nut shells and areca nuts. J. Clean. Prod. 256, 120434 https://doi.org/10.1016/j.jclepro.2020.120434.
De Conti, A.C., Granado, M.P.P., Padilla, E.R.D., Nakashima, G.T., De Conti, C., Yamaji, F.M. (2022). Binderless briquetting of mixed cassava rhizome, sugarcane bagasse, and sugarcane straw for producing solid biofuel with high durability. Bio Energy Research. 15 (2): 507–516. https://doi.org/10.1007/s12155-021-10300-5.
Falemara, B.C., Joshua, V.I., Aina, O.O and Nuhu, R. D. (2018). Performance evaluation of the physical and combustion properties of briquettes produced from agro-wastes and wood residues. Recycling 3, 3. http://dx.doi.org/10.3390/ recycling3030037.
Galembeck, F and Abreu Filho, P. P. (2017). Perspectives for biomass production and use in Brazil. Rev. Virt. Quím. 9(3): 274–293. https://doi.org/10.21577/1984- 6835.20170018.
Gamea G. R., E. A. El Saeidy and S. F. El Sisi (2012). Quality properties for cotton stalks and rice straw briquettes, The 19 th. Annual Conference of the Misr Soc. of Ag. Eng., 14-15 November, 2012
Ifa, L., Yani, S., Nurjannah, N., Darnengsih, D., Rusnaenah, A and Mel, M. (2020) Techno-economic analysis of bio-briquette from cashew nut shell waste. Heliyon 2020, 6 (9): e05009. https://doi.org/10.1016/j.heliyon.2020.e05009.
Imeh, E. O., Ibrahim, A., Mohammed-Dabo, A. O., Ameh S., I.R. Okoduwa and Opeoluwa, O. F. (2017). Production and Characterization of Biomass Briquettes from Tannery Solid Waste Recycling 2017, 2 (17): doi:10.3390/recycling 2040017
Isa, K., Godfrey, O., Noble, B., Jeffrey, S., Ahamada, Z and Nicholas K. (2018). Characterization of Banana Peels Wastes as Potential Slow Pyrolysis Feedstock. Journal of Sustainable Development. 11(2): 2018 ISSN 1913-9063 E-ISSN 1913-9071
Jamradloedluk, J and Wiriyaumpaiwong, S. (2007) Production and Characterization of Rice Husk Based Charcoal Briquettes. KKU Eng. J. 2007, 34, 391–398.
Jiao, W., Tabil, L. G., Xin, M., Song, Y., Chi, B., Wu, L., Chen, T., Meng, J and Bai, X. (2020). Optimization of process variables for briquetting of biochar from corn stover. Bioresources 15 (3): 6811–6825. In: https://ojs.cnr.ncsu.edu/index.php/BioRes/art.
Kebede, T., Dargie, T. B and Yohannes, Z. (2022) Combustion Characteristics of Briquette Fuel Produced from Biomass Residues and Binding Materials. Journal of Energy Volume 2022, Article ID 4222205, 10. https://doi.org/10.1155/2022/4222205
Kers, J., Kulu, P., Aruniit, A., Laurmaa, V., Krizan, P., Soos, L and Kask, Ü. (2010). Determination of physical, mechanical and burning characteristics of polymeric waste material briquettes. Est. J. Eng. 2010, 16, 307–316. [CrossRef]
Kpalo, S.Y., Zainuddin, M.F., Manaf, L. A and Roslan, A. M. (2020). A review of technical and economic aspects of biomass briquetting. Sustain 2020;12(11):4609. https://doi. org/10.3390/su12114609.
Kpalo, S.Y., Zainuddin, M.F., Manaf, L.A and Roslan, A.M. (2020). Production and characterization of hybrid briquettes from corncobs and oil palm trunk bark under a low pressure densification technique. Sustainability 12 (6): 1e16. https:// doi.org/10.3390/su12062468.
Mandal, S., Kumar, G.P., Bhattacharya, T.K., Tanna, H.R and Jena, P.C. (2019). Briquetting of pine needles (Pinus roxburgii) and their physical, handling and combustion properties. Waste Biomass Valorization 10 (8): 2415–2424. https://doi.org/ 10.1007/s12649-018-0239-4.
Mani, S., Tabil, L.G and Sokhansanj, S. (2006). Specific energy requirement for compacting corn stover. Bioresour. Technol. 97, 1420–1426
Mitchual, S.J., Katamani, P and Afrifa, K.A. (2019). In: Fuel Characteristics of Binder Free Briquettes Made at Room Temperature from Blends of Oil Palm Mesocarp Fibre and Ceiba Pentandra. Biomass Conversion and Biorefinery, pp. 541e551. https:// doi.org/10.1007/s13399-019-00410-8.
Mohd, F. S., Jaffar, N and Mohd, A.S., (2022). Integrate the adoption and readiness of digital technologies amongst accounting professionals towards the fourth industrial revolution. Cogent Bus. Manag. 9 (1): 2122160. https://doi.org/10.1080/ 23311975.2022.2122160.
Mohd-Faizal, A.N., Mohd-Shaid, M.S.H and Ahmad-Zaini, M.A. (2022). Solid fuel briquette from biomass: recent trends. O.U.A.C. 33 (2): 150–155. https://doi.org/10.2478/ auoc 2022-0022.
Navalta, C. J. L. G., K. G. C. Banaag., V. A. O. Raboy., A. W. Go., L. K. Cabatingan and Y. H. Ju (2020). Solid fuel from Co-briquetting of sugarcane bagasse and rice bran. Renewable Energy, 147, 1941−1958.
Nussbaumer T. (2003) Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy. Fuels. 2003; 17:1510-1521
Obernberger, I., Brunner, T and Bärnthaler, G. (2006) Chemical properties of solid biofuels—significance and impact. Biomass. Bioenergy. 2006; 30: 973-982.
Onuegbu, T.U., Ekpunobi, U.E., Ogbu, I.M., Ekeoma, M.O and Obumselu, F.O. (2011). Comparative studies of ignition time and water boiling test of coal and biomass briquettes blend. Int. J. Res. Rev. Appl. Sci. 7 (2): 153e159.
Onukak, I. E., Mohammed-Dabo, I. A., Ameh, A. O., Okoduwa, S.I and Fasanya, O.O. (2017). Production and characterization of biomass briquettes from tannery solid waste. Recycling 2 (4): 17–33. https://doi.org/10.3390/recycling2040017.
Parikh, J., Channiwala, S.A and Ghosal, G.K. (2007). A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel 86 (12–13): 1710–1719. http://dx.doi.org/10.1016/j.fuel.2006.12.029.
Pinto, J., Cruz, D., Paiva, A., Pereira, S., Tavares, P., Fernandes, L and Varum, H. (2012) Characterization of corn cob as a possible raw building material. Constr. Build. Mater. 2012, 34: 28–33.
Pravin, K. S., Suryakant, C., Satendra, D., Khageshwar, S. P. (2016) Combustion Characteristics of Animal Manures. Journal of Environmental Protection, 2016, 7: 951-960 http://dx.doi.org/10.4236/jep.2016.76084
Rabi, K. A., Shaharin, A. Sulaiman., Suzana, Y., Sharul, S. Dol., Muddasser, I and Hadiza, A. U. (2022) Exploring the potential of coconut shell biomass for charcoal production Ain Shams Engineering Journal 13: 101499.
Rosado, M.J., Marques, G., Rencoret, J., Gutiérrez, A and del Río, J. C. (2022) Chemical Composition of Lipophilic Compounds from Rice (Oryza sativa) Straw: An Attractive Feedstock for Obtaining Valuable Front. Plant Sci. 13:868319. doi: 10.3389/fpls.2022.868319 Phytochemicals
Samomssa, I., Nono., Y.J., Carac, G., Gurau, G., Dinica, M.R and Kamga, R. (2021). Optimization of fuel briquette production from cassava peels, plantain peels and corncobs. J. Mater. Cycles Waste Manag. 1–13. https://doi.org/10.1007/s10163- 021-01260-1.
Sawadogo, M., Kpai, N., Tankoano, I., Tanoh, S.T and Sidib, S. (2018). Cleaner production in Burkina Faso: case study of fuel briquettes made from cashew industry waste. J. Clean. Prod. 195, 1047-1056. https://doi.org/10.1016/ j.jclepro.2018.05.261.
Sotannde, O.A., Oluyege, A.O and Abah, G.B. (2010). Physical and combustion properties of briquettes from sawdust of Azadirachta indica. J. For. Res. 21 (1): 63e67. https://doi.org/10.1007/s11676-010-0010-6.
Suhartini, S., Hidayat, N and Wijaya, S. (2011). Physical properties characterization of fuel briquette made from spent bleaching earth. Biomass Bioenergy 35 (10): 4209-4214. https://doi.org/10.1016/j.biombioe.2011.07.002.
Torquato, L. D. M., Crnkovic, P.M., Ribeiro, C.A and  Crespi, M.S. (2017). New approach for proximate analysis by thermogravimetry using CO2 atmosphere: Validation and application to different biomasses. J. Therm. Anal. Calorim. 128 (1): 1–14. http://dx.doi.org/10.1007/s10973-016-5882-z.
Ujjinappa, S and Sreepathi, L. K., (2018). Production and quality testing of fuel briquettes made from pongamia and tamarind shell. Sadhana 43 (58): 1e7. https://doi.org/ 10.1007/s12046-018-0836-8S.
Wang, T., Li, Y., Zhi, D., Lin, Y., He, K., Liu, B and Mao, H. (2019). Assessment of combustion and emission behavior of corn straw biochar briquette fuels under different temperatures. J. Environ. Manag. 250, 109399. https://doi.org/10.1016/j. jenvman.2019.109399.
Yaman, S., Sahan, M., Haykiri-Açma, H., ¸Sesen, K and Küçükbayrak, S. (2001) Fuel briquettes from biomass-lignite blends. Fuel Process Technol. 2001, 72: 1–8.
Zafar, S. (2016). Biomass resources from sugar industry, http://www.bioenergyconsult. com/tag.
Zhang, P., Whistler, R.L., BeMiller, J. N and Hamaker, B. R. (2005). Banana starch: Production, physicochemical properties and digestibility– a review. Carbohydrate Polymers. 2005; 59(4): 443-458.