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ABSTRACT 

Developing and launching many remote sensing satellites with 

varying spatial-temporal accuracy, have provided various types 

of data at spatial, spectral, radiometric, and temporal scales, 

therefore, mapping agricultural ecosystems' physical and 

ecological characteristics with high accuracy became available 

by integrating remote sensing models with meteorological data. 

The primary goal of this research is to determine the 

agricultural water productivity under center pivot irrigation 

systems based on satellite data analysis. Landsat 8 images, 

agrometeorological stations, and the use of the light Use 

Efficiency model of Monteith (LUE) and SSEB (Simplified 

Surface Energy Balance) models were used to calculate the 

amount of crop production biomass (BIO) and The amount of 

water consumed, represented by the actual evapotranspiration 

(ET), respectively, and then, based on ET, the water 

productivity was determined. (WP = BIO/ET). The average ET, 

BIO, and WP values in 2021 summer season crops, ranged 

from 3.01± 1.73 to 4.1 ± 2.35 mm day
-1

; 96.4 ± 55.4 to 191.6 ± 

110.2 kg ha
-1

 day
-1

; and 1.64 ± 0.94 to 2.43 ± 1.4 kg m
-3

, 

respectively. The average water productivity values for the 

crops cultivated in the research region ranged from 1.1 to 1.4 

Kg m
−3

 for watermelon, 1.1 to 1.6 Kg m
−3

 for peanut, 3 to 3.3 

Kg m
−3

 for Alfalfa, and 1.3 to 2.1 Kg m
−3

 for maize. These 

findings demonstrate that water productivity estimates derived 

from remote sensing data may be utilized as an indication for 

increasing water rationalization via improved land and water 

management methods. 
 

1. INTRODUCTION 

he rising population densities throughout the globe, along with the dramatic shift in 

the climate, will almost certainly impact the availability of food and water for various 

years to come, according to experts (Fonseca et al., 2022). Egypt has another 

problem, besides the ones already stated, which is the construction of dams on the Nile, which 

T 
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is the country's primary supply of fresh water. Because of this, it is critical to make the most 

of the available water unit to the greatest extent workable. 

A change in land use and land cover patterns can occur as a result of a variety of different 

human activities. Crop production systems are reliant on a variety of inputs, including water, 

soil, and climate. Human activities can create major changes in evaporation, water balance, 

and the volume and quality of surface and groundwater if they are not effectively managed 

(FAO, 2019). 

Weather is a major predictor of agricultural production in all places with different 

environmental conditions, and irrigated agriculture relies on data on agriculture and 

meteorology to perform effective management, as well as provide the required volume of 

water to compensate for hydric deficits in agricultural crops. (Beillouin et al., 2020). 

Irrigation in Egypt depends on surface water, as it is the main source to meet the water needs 

of crops, represented by the Nile River. As a result, research on the most efficient use of water 

for optimum crop production must be undertaken, as well as the creation and deployment of 

technologies for water usage analysis and planning. (Abuzai, and Jahin, 2021). 

The center pivot irrigation systems, next to the drip irrigation system, are the modern trends 

that are directed to reduce water use, but with the increase of installed equipment, an increase 

in water consumption can occur. Therefore, work must be done on how to provide water to 

the appropriate spot in the field in the right quantity and at the right time, as well as to gather 

information to aid in the water management (Gabr and Fattouh, 2021). 

Remote sensing techniques have now become one of the most important tools used for 

environmental analysis, and its applications in agriculture, along with data related to 

meteorological information, enable us to map the biophysical properties of all the elements on 

the earth's surface can be monitored by these techniques with a great degree of precision 

(Wang et al., 2018). 

The numerous uses of these models provide a wealth of valuable information about surface 

energy balance flow estimates. Especially for irrigated crops, as well as the analysis of water 

consumption for agricultural ecosystems (Sadras et al., 2015). 

Estimating water productivity from satellite data on a wide scale is a very crucial support tool 

for agricultural policy decision-makers and planners in their decisions regarding the use of 

natural resources (Jiang et al., 2015). Providing water for plants leads to an increase in 

production biomass (BIO) and evapotranspiration (ET) (Antônio et al. 2012 and Teixeira et 

al. 2013). These are agro-environmental indicators to assess water productivity in agricultural 

systems.  

The process of photosynthesis in plants to create (BIO) depends on Photosynthetically Active 

Radiation (PAR). In this process, chlorophyll, which is responsible for the process of 

photosynthesis inside the cell, absorbs a portion of the short wavelength solar radiation. PAR 

only consumes 40 to 50 percent of the total energy of solar radiation falling on the surface of 

the earth. As a result, PAR is a small percentage of the solar radiation (RS) that enters the 

system. The visible region of the solar spectrum between 0.4 and 0.7 µm is where chlorophyll 

absorbs solar radiation, and this is referred to as PAR. (Verger et al., 2017). 

On a large scale, the quantification of BIO allows us to make comparisons between different 

crops and base our estimate on solar radiation. The model was created by Monteith and is 
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based on the notion of light-use efficiency (LUE) (Bastiaanssen and Ali, 2003), It is 

appropriate to use this method in conjunction with the parameters derived from orbital data 

(Teixeira et al. 2013 and Zwart et al. 2012). The capacity of the plant to utilize gross 

primary productivity per unit of absorbed photosynthetically active radiation (APAR), which 

is constrained by temperature and water scarcity, is referred to as LUE (Swinnen and Van 

Hoolst, 2018). 

Physical water productivity (WP) is defined as the ratio of agricultural output to the amount 

of water consumed, while economic water productivity (WP) is defined as the value derived 

per unit of water consumed, and both have been used to link agricultural water use to 

nutrition, jobs, welfare, and the environment (Bhattacharjee et al., 2021). 

Evapotranspiration is a factor in water productivity, and the algorithm  Simplified Surface 

Energy Balance (SSEB) determines how much of it there is.(SSEB) permits using the Penman 

Monteith equation to estimate ET in conjunction with data on biophysical parameters 

obtained through the use of remote sensing (Acharya and Sharma, 2021). 

Under Egyptian conditions, an algorithm with different hydrological data field conditions for 

agro-ecosystems with different types of cultures was developed and validated for ET-based 

Penman-Monteith determination and showing good results (El-Shirbeny et al., 2018). 

With the assistance of Landsat images, metrological data, and the application of the Monteith 

and SSEB models to estimate the BIO and the ET, respectively, this study aims to identify the 

spatial-temporal agro-ecological indicators of water productivity. For effective planning and 

decision-making at the farmer level, for integrating data from many sources, and for creating 

new data, the notions of water productivity are helpful in this regard. The management of 

Egypt's water resources will be aided by agroecological indicators. 

2. MATERIALS AND METHODS 

2.1 Study Area 

El-Salhia project was selected as a study area which is located in the Nile Delta's eastern part. 

It is bordered on one side by 30
o
 22

'
 35

"
 and 30

o
 31' 19" latitudes and on the other side by 31

o
 

55
'
 24

"
 and 32

o
 02

'
 38

"
 longitudes as shown in Fig. 1. The total area of the project is 

approximately 32857 Fed. The project employs two types of irrigation systems: center pivots 

and drip irrigation. Pivot irrigation is used for field crops and drip irrigation is used for 

orchards trees. There are around 130 pivots in the project. Each pivot unit irrigates around 151 

acres of land. The common pivots length in the project is about 450 meter.  

2.2 Climate Conditions 

The climate in the study region is mostly dry and arid, according to the Köppen Climate 

Classification System, with precipitation accounting for less than half of total potential 

evapotranspiration in most years. The average Temperature on an annual basis is higher than 

18 °C. The average yearly rainfall is around 20 millimeters. Winter rains reach their heaviest 

levels in January, with an average rainfall amounting to 6.9 mm. The maximum temperature 

in June is 34.6°C on average, while January is the coldest month, with an average temperature 

of 19.0 °C (El-Shirbeny et al., 2021). 

2.3 Remote Sensing Data Availability 

Every 16 days, the Landsat 8 and Landsat 7 ETM+ satellite takes images of the entire Earth. 

The Operational Land Imager (OLI) sensor and the Thermal Infrared Sensor (TIRS) sensor 
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on board Landsat provide two thermal bands. The Landsat 8 and Landsat 7 ETM+ satellite 

images used in this investigation were available from the US Geological Survey (USGS). 

Satellite data for model development were acquired from June to October/2021.The scenes 

are located at (path 176/row 039) around 10:15 AM local time with a ground resolution of 30 

meters. All of the satellite images from Landsat8 and Landsat 7 ETM+ which covered the 

study area were used to get a larger number of images that represent the growing season. So 

we can increase the accuracy of the model, which will be established based on this data. 

 
Figure 1. Location map of the study area 

2.4 Remote sensed parameters 

2.4.1 Land Surface Temperature (LST) 

The recorded digital numbers (DN) from landsat8&7 data were converted to radiance units 

(Rad) using the calibration coefficients specific to each band (El-Shirbeny et al., 2014).  

Radiance = 0.0003342* DN+ 0.10000          (1) 

The empirical equation constructed from raw data on the Normalized Difference Vegetation 

Index (NDVI) and thermal emissivity was used to calculate surface emissivity (Eo) using 

NDVI (Valor and Caselles, 1996).  

Eo = 0.9932 + 0.0194 ln NDVI            (2) 

To compute radiant temperature (To), one must first determine the band 10 radiance (Rad10) 

and then use the calibration constants K1=774.89 and K2=1321.08 to get the radiant 
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temperature (To) (El-Shirbeny et al., 2014). The K1 and K2 values for landsat7 are 666.09 

and 1321.08, respectively. 

To = K2/ ln((K1/Rad10) +1)         (3) 

The temperature obtained as a result is the satellite radiant temperature of the observed Earth 

atmospheric system (in Kelvin), which is similar to but not identical to the Earth's surface 

(kinetic) temperature. Using satellite thermal data to provide an accurate estimate of surface 

temperature, it is necessary to take the effects of the atmosphere and the thermal emissivity of 

the surface into consideration (Norman et al., 1995). The Land Surface Temperature (LST) 

was calculated because of computing the top of atmospheric radiant temperature (To) and 

approximated surface emissivity (Eo) as follows: 

LST = To/Eo (K)               (4) 

2.4.2 Normalized Difference Vegetation Index 

The Normalized Difference Vegetation Index (NDVI) was calculated using two bands of 

remote sensing data: red and near-infrared. It is determined by the plant's reflectance in the 

red (R) and near-infrared (NIR) spectrum regions. This vegetation index is calculated as 

follows:  

NDVI =
(NIR−R)

(NIR+R)
                 (5)                                                        

Where: R is the reflectance in the red region and NIR is the reflectance in near infrared region 

of the spectrum. The scientists concluded that NDVI values are closely linked to vegetation 

metrics such as net primary production, leaf area index, and gross primary productivity 

(Gamon et al., 1995). 

2.5 Water use mapping (actual evapotranspiration, mm)  

Evapotranspiration must be estimated to determine the quantity of water utilized by crops, 

regardless of whether remote sensing technologies or conventional methods are used. (Liou 

and Kar 2014) found that the ET obtained from various surfaces differs with different 

approaches, resulting in inconsistency and ambiguity in ET estimate. 

However, algorithms for surface energy balance, which are mostly based on remotely sensed 

data, are the best way to assess how much water crops use. The potential of remote sensing in 

estimating the ET (Li et al., 2009) is well established using Surface Energy Balance 

Algorithm (SEBAL) (Bastiaanssen et al., 1999), the modified SEBAL, and mapping ET with 

high resolution and internalized calibration (METRIC) (Allen et al., 2007). A Simplified 

Surface Energy Balance (SSEB) model utilising remote sensing was suggested by (Senay and 

Verdin, 2003). In this study, the SSEB technique was used to speed up the computation of 

water use over huge areas in a short period of time. The SSEB model is described in this 

manner: 

ETactual (m3/m2 or m3/pixel) = ETfraction* ETreference          (6) 

Remote sensing was used to calculate the ETactual (expressed in m3/ha or mm/m2) of the 

water used by crops, which was calculated using the following processes: The ETfraction 

coefficients were calculated using thermal data from Landsat8. The main premise of the 

SSEB model is that the latent heat flux (ETactual) between the "hot" and "cool" pixels varies 

linearly between them. The proportion of ET's "hot" and "cool" pixels that depend on the land 

surface temperature (LST) was calculated (LST). 

ETfraction = (Thot - T) / (Thot - Tcold)                (7) 
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Where ETfraction is the fraction of ET, T is the LST of any pixel, and Thot and Tcold are the 

LST of "hot" and "cool" pixels picked inside the research region, respectively. Applying the 

Penman-Monteith formula, the ETreference was derived from weather station data (Allen et 

al., 1998). The final ET value for each pixel was calculated by multiplying ETfraction by 

ETreference, giving ETactual. 

ETfraction maps were created using thermal bands from Landsat ETM+ photos obtained 

between June and October. For the sensor pass time, land surface temperatures were produced 

using the thermal bands, and locations outside the research extents were masked off. The 

choice of hot and cold pixels must be made with care. Despite the fact that some areas, such 

as concrete roadways or communities, are more likely to have greater temperatures, the 

hottest pixel should be chosen from dry barren farm land, where ET is virtually nil and 

temperature is lower. To avoid noise or the impacts of other extreme situations, numerous (5-

10) pixels were chosen to calculate average values for hot (Thot) and cold (Tcold) pixels, 

rather than a single one. Each one's Thot and Tcold were determined. 

2.6 Crop productivity mapping (kg/m2) 

The Monteith's radiation model, commonly known as the Light Use Efficiency Model (LUE), 

estimates productivity and predicts that APAR (Wm
−2

) and maximum light use efficiency are 

directly proportional. 

2.6.1 Photosynthetically Active Radiation – PAR 

It is the portion of the sun's short-wave energy, which ranges from 0.45 to 0.5 of the solar 

radiation (0.3 to 3.0 µm), that helps green plants support photosynthesis (Jacovides et al., 

2003). The formula for calculating PAR (Wm
-2

) is as follows: 

PAR = aRS                 (8) 

In the regression equation, the constant a=0.48 reflects the amount of solar radiation that leaf 

chlorophyll can utilize for photosynthesis in arid and semiarid settings (Teixeira et al., 2009 b). 

2.6.2 Absorbed Photosynthetically Active Radiation (APAR) 

Directly from PAR, the Absorbed Photosynthetically Active Radiation (APAR) (Wm
-2

) was 

estimated: 

APAR = fPAR*PAR              (9) 

Based on the NDVI data (Bastiaanssen and Ali 2003; and Teixeira and Bassoi 2009 a), it 

may calculate the following factor, Fraction of photosynthetically active radiation (fPAR), as 

follows: 

fPAR = a NDVI + b               (10) 

The estimated fPAR was obtained by establishing a relationship between the NDVI and the 

fPAR measured on the ground represented. fPAR was determined using the AccuPAR device, 

which records the quantity of PAR intercepted above and below the canopy in an open field. 

As a result, even at the soil surface, radiation falling above the canopy can be absorbed and 

reflected. 

2.6.3 Estimate crop production biomass (BIO) was quantified as: 

The moisture effect was included in the BIO calculations using the ETfra (Teixeira et al., 

2018) component of the Monteith's LUE model (Monteith, 1972): 

BIO = Σ (εmaxETfra APAR 0.864)          (11) 
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Where εmax represents the highest light use efficiency possible and 0.864 represents the unit 

conversion factor. For the majority crops in the study area, εmax of 2.4 g MJ−1 was used, 

assuming that photosynthetically active radiation is 48% of incident solar irradiance as stated 

by (Gardner et al. 2017). LUE is influenced by a variety of factors, including the crop 

growth stage, temperature, CO2 content in the atmosphere, and the availability of nitrogen and 

water. 

2.7 Producing water productivity maping (WPMs) 

A division of the crop productivity map with the water usage map give us the Water 

Productivity Maps (WPMs). The WPMs will be as follows: 

Water Productivity Maps (kg/m
3
) = 

Bio (kg/m2 or kg/pixel) )

Water use (m3 /m2 or m3 /pixel)
 

3. RESULTS AND DISCUSSION 

To be used in the LUE model of BIO estimate in summer season 2021, a relation between 

fPAR and NDVI data has been constructed. It was determined that an empirical relationship 

between fPAR and NDVI could be created to calculate fPAR from remotely sensed data. 

Predictive functions with different mathematical forms (linear, logarithmic, power, and so on) 

were employed to identify the best statistical fit between the NDVI and the corresponding 

measured fPAR (n=45) values, with the best statistical fit being determined by the highest 

correlation coefficient. It was discovered via statistical analysis that the NDVI has a linear 

relationship with fPAR, with a coefficient of determination (R
2
) equal to 0.87 for both 

variables. 

 

Figure 2. Relationship between NDVI and fPAR for peanuts crop during summer season 2021 

and potato crop during winter season 2019. 

The coefficients a and b were calculated as follows: 1.317 and -0.030, respectively. Thus, we 

can estimate fPAR based on NDVI data through the following linear equation: 

fPAR = 1.317* (NDVI) – 0.030 
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First, the monthly behavior of these meteorological parameters for the year 2021 was 

examined in order to better understand the monthly behavior of biophysical variables, which 

are predominantly influenced by solar radiation and precipitation (Figure 3). The information 

utilized in this study originates from the Ismailia–Ksaseen agro meteorological station in 

Ismailia–Ksaseen, Egypt (Latitude: 30.52 | Longitude: 31.96 | Altitude: 5 see Figure (1). 

 

 
Figure 3. Recorded monthly averages of global solar radiation (RS) and total precipitation (P) 

for the year 2021in Ismailia ksaseen_ Egypt. 

It is possible for natural vegetation as well as irrigated crops to generate enormous quantities 

of biomass provided adequate solar radiation and soil moisture are made accessible. The 

optimum conditions for natural vegetation occurred in November to March due to the amount 

of rain, while the best conditions for irrigated crops occurred in any month, because 

precipitation is not necessary for the development of plants. The total rainfall for the year 

2021 was 25.18 mm. higher levels of RS happened during the middle four months of the year. 

Where we notice the solar radiation begins to rise from January until it reaches its peak in 

July, due to the clearness of the atmosphere from the clouds and the lack of rain in the 

summer. Then it begins to decline again until it reaches its lowest value in the winter due to 

clouds and rain. In both irrigated and non-irrigated regions, the lowest solar energy 

availability is less beneficial for BIO. 

According to (Jacovides et al., 2003), the PAR, which is around 48 percent of RS, is 

extraordinarily high, and when there is enough water available, this radiation is captured by 

crop leaves, resulting in photosynthesis taking place. Natural vegetation will generate 

significant quantities of BIO during the rainy season when these levels of PAR are present, 

however, irrigated crops will generate a significant quantity of BIO outside of this time. 

Following the calculation of the ETfraction as well as APAR, Equation 11 was used to 

calculate the BIO values on a monthly and annual basis to produce the final results. Figure 4 

shows the geographic variation of the monthly BIO values for the research area for the year 

2021 as depicted in the study area. 
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Figure 4. The spatial distribution of the daily biomass production (BIO) values during the 

summer of 2021 in Ismailia, El-Salhia, Egypt. 

 

It is clear that BIO varies both spatially and temporally throughout the year. We take the 

summer season during 2021 to track BIO values. In the study area the end of winter season 

and the beginning of summer season during June. June is the month with the highest values, 

with some areas with BIO higher than 350 kg ha
-1

 day
-1

, with an average BIO of 300 kg ha
-1

 

day
-1

for the total area. The pivots with a high value of BIO during July and August, are the 

summer crops that were planted in the study area and their classification was showen in figure 

(5). The combined effect of increased soil moisture In addition to solar radiation leads to an 

increase in BIO local values. It was noted on July 8th that the largest standard deviation 

(STD) was observed, with a value of 80 kg ha
-1

 day
-1

, suggesting that the season had the most 

variability. When the crops in the region were harvested in October, the standard deviation 

was at its lowest, with a value of 32 kg ha
-1

 day
-1

. This was the end of the summer season and 

the beginning of the winter season, and the land was being prepared for the beginning of the 

winter season. 

 

For the summer season of 2021, Figure 6 shows the spatial distribution of daily ET pixel 

values. Because there is a relationship between BIO and ET, ET values follow a similar 

pattern throughout the season. The maximums occurred in July and August, with an average 

of 7.7 mm day
-1

. The non-cultivated pivots exhibit the lowest ET values throughout the driest 

months of the year, from July to October, while the irrigated pivots exhibit the greatest ET 

values. In general, irrigation intervals are short (daily irrigation), with a uniform water supply, 

lowering the heat losses to the atmosphere in irrigated pivots. Stomata close during dry 

natural circumstances, limiting transpiration and photosynthesis. 
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Figure 5. Map of crop types in Egypt's Ismailia_ El-Salhia region during the summer season 

of the year 2021. 

 

 
Figure 6. Actual daily evapotranspiration (ET) readings in  

Ismailia - El-Salhia - Egypt in summer 2021. 

According to the research region, soil moisture has a significant impact on the amplitude of 

the ET rates (Figure 1). Pivots that have not been cultivated have pixels with values that are 

near 0 mm day
-1

. The effect of variability caused by changes in cultivated pivots and non-

cultivated pivots resulted in the highest (STD) value of 2.3 mm day
-1

 occurring in August as a 

https://mjae.journals.ekb.eg/?_action=article&issue=32679&sb=2409&_sb=Agricultural+Irrigation+and+Drainage+Engineering


AGRICULTURAL IRRIGATION AND DRAINAGE ENGINEERING 

MJAE ـ October 2022                                                                                                                     519 

result of the influence of variability created by changes in cultivated pivots and non-cultivated 

pivots. As is the case with BIO, the month of September has the lowest standard deviation 

(STD) of 1.7 mm day
-1

. 

The greatest mean WP value was recorded in June, at 1.2 Kg m
−3

 (standard deviation: 1.16); 

the second highest mean value was recorded in July, at 1.1 Kg m
−3

 (standard deviation: 1.2). 

(Figure 6). Cropped pivots had the greatest WP value in June, with a maximum value of 4.80 

Kg m
−3

 and a mean value of 1.2 Kg m
−3

 (standard deviation: 1.16) throughout the month. 

Because it was the end of the growing season and there was little soil moisture, images taken 

on September 18 showed the lowest WP, with a mean value of 0.7 Kg m3 (standard deviation: 

0.72). 

 
Figure 7. The Spatial distribution of the daily values of water productivity (WP) during 

summer season of the year 2021 in Ismailia_ El-Salhia _ Egypt. 

 

It is feasible to calculate the crop water productivity based on ET (CWPET) by multiplying 

BIO by the harvest index (HI).When evaluating the WP for various forms of land use, the 

confirmed value for the watermelon was 1.1 to 1.4 Kg m
−3

, for Peanut WP was 1.1 to 1.6 Kg 

m
−3

, for Alfalfa WP was 3 to 3.3 Kg m
−3

,
 
for maize WP was 1.3 to 2.1 Kg m

−3
. When it comes 

to Horticulture, the highest value was 2.8 Kg m
−3

, the mean value was 1.9 Kg m
−3

, and the 

standard deviation was 0.5. The WP results obtained during this study were confirmed by 

previous studies of other researchers. WPET values of 1.1 to 1.3 kg m
−3

 for oats, 1.5 to 2.6 kg 

m
−3

 for sunflower, 0.5 to 1.1 kg m
−3

 for legumes, and 3.1 to 4.4 kg m
−3

 for potato were found 

in Inner Mongolia, which is semi-arid (Yuan et al., 2013). WPET varied from 1.9 to 2.3 kg 

m
−3

 for oil seed crops grown in India's semi-arid environments (Adak et al., 2013). 
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4. CONCLUSION 

The study's major results show that satellite data and meteorological station data may be used 

to properly anticipate water productivity in the field. With this combination, large-scale water 

productivity studies across a range of Egypt's semi-arid agro-ecosystems were achievable 

under the Ismailia_ El Salhia irrigation project between June and October 2021. At various 

times of the day, measurements of thermal, near-infrared, and visible radiation in the L8 

bands were acquired from satellite data. This data was obtained by simulating the ratio of 

actual to reference evapotranspiration at the time of the satellite overpass, as well as by 

having access to daily weather data, this offered temporal data on plant reactions to changing 

weather and irrigation conditions as well as growth rates of the vegetation. These results 

suggest that water productivity estimates obtained from remote sensing data may be used as 

an indicator for boosting water rationalization via better land and water management 

approaches. 
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 الكلمات المفتاحية:

كفاءة ؛ الكتلة الحيوية؛ البخرنتح

؛ الاستشعار عن بعد؛ استخدام الضوء

 نظام الري المحوري.

 

 الملخص العربي

أقمار الاستشعار عن بعد ذات الدقة المكانية  العديد منلقد أدى تطوير وإطلاق 

ة والزمانية المتفاوتة إلى توفير أنواع مختلفة من البيانات على المقاييس المكاني

، وبالتالي أصبح رسم خرائط الخصائص والطيفية والإشعاعية والزمانية

الفيزيائية والبيئية للنظم الإيكولوجية الزراعية متاحًا بدقة عالية من خلال دمج 

نماذج الاستشعار عن بعد مع بيانات الأرصاد الجوية. الهدف الأساسي من هذا 

البحث هو تحديد الإنتاجية المائية الزراعية في ظل أنظمة الري المحوري بناءً 

ى تحليل البيانات المتحصل عليها من الاقمار الصناعية. تم استخدام صور عل

 واستخدامومحطات الأرصاد الجوية الزراعية ( Landsat 8)القمر الصناعى 

(  و )ميزان الطاقة السطحي Monteith LUE)نموذج كفاءة استخدام الضوء

( وكمية BIO( لحساب كمية الكتلة الحيوية لإنتاج المحاصيل )SSEBالمبسط  

، على التوالي، وبعد ذلك، بناءً (ET، يمثلها التبخر الفعلي )المياه المستهلكة

 ET(. تراوحت قيم WP = BIO/ET، تم تحديد إنتاجية المياه. )ETعلى 

إلى  1.73±  3.01من  2021في محاصيل موسم الصيف  WPو BIOو

كجم  110.2±  191.6إلى  55.4±  96.4؛ ملم في اليوم ±2.35  4.1

هكتار
-1

يوم 
-1

كجم م 1.4±  2.43إلى  0.94±  1.64؛ و  
-3

، على التوالي.  

تراوحت قيم متوسط إنتاجية المياه للمحاصيل المزروعة في منطقة البحث من 

كجم م 1.4إلى  1.1
-3 

كجم م 1.6إلى  1.1، للبطيخ
-3 

إلى  3للفول السوداني، 

كجم م 3.3
-3 

كجم 2.1إلى  1.3للبرسيم ، 
−3 

توضح هذه النتائج أن  للذرة.

تقديرات الإنتاجية المائية المستمدة من بيانات الاستشعار يمكن استخدامها 

 كمؤشر لزيادة ترشيد المياه من خلال أساليب إدارة الأراضي والمياه المحسنة.
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