EFFECT OF IRRIGATION WATER AND NITROGEN FERTILIZER ON GROWTH AND PRODUCTIVITY OF COWPEA CROP WITH MAGNETIZED WATER

Document Type : Original Article

Authors

1 Assoc. Prof. of Irrigation and Drainage Eng., Ag. Eng. Dept., Fac. of Ag., Zagazig U., Egypt.

2 Assoc. Prof. of Irrigation and Drainage Eng., Ag. Eng. Dept., Fac. of Ag., Suez Canal U., Egypt.

Abstract

Using of magnetized water has shown several advantages including improvement quality of irrigation water and increase the productivity of vegetable crops. Therefore, the present work was carried out to study the response of growth, yield, water and nitrogen use efficiency of cowpea for irrigation with two types of irrigation water (magnetized and non-magnetized water) under two levels of nitrogen fertilizer (100 and 75 % of the recommended rate) during the summer seasons of 2018 and 2019. The results cleared that all yield parameters increased significantly when irrigation occurred using magnetic water, such as total yield which increased by about 26 and 31% in the first and second season, respectively. Concerning the effects of magnetized water, the results reflected that irrigation with magnetic water significantly increased the values of the water use efficiency from 0.40 and 0.42 kg/m3 to 0.52 and 0.54 kg/m3 with magnetic water in both growing seasons. The gradual increases of nitrogen fertilizer levels were accompanied with significant increases on vegetative growth and yield, as well as nitrogen uptake and nitrogen use efficiency. The interaction effects between types of irrigation water and different levels of nitrogen fertilizer significantly affected all treatments and reflected a positive impact. The results reflect the possibility of reducing the applied rate of nitrogen fertilizer when cowpea plants irrigated with magnetized water to a percentage 25% without affecting the different studied characters. As well as many benefits for cowpea plants such as enhancing vegetative growth, increasing yield, improving crop quality were achieved.

Keywords

Main Subjects


Abd El–Latif A., A. Abdelshafy and T. Eid, (2015). Minimizing strawberry mineral fertilization and enhancing water use efficiency by using magnetized irrigation   water. Journal of Plant Production, 6(9): 1581–1593.
Abou El-Yazied,  A., A.M. El-Gizawy,  S.M. Khalf, A. El-Satar  and O.A. Shalaby, (2012). Effect of magnetic field treatments for seeds and irrigation water as well as N, P and K  levels on productivity of tomato plants. Journal of Applied Sciences Research, 8(4): 2088–2099.
Ali, Y., R. Samaneh and F. Kavakebian, (2014). Applications of magnetic water technology in farming and agriculture development: A review of recent advances. Current World Environment, 9(3):695–703.
Anele, U. Y, K. H. Sudekum, J. Hummel, O. M. Arigbede, A. O. Oni, J. A. Olanite, C. Bottger, V. O. Ojo, A. O. Jolaosho (2011). Chemical characterization, in vitro dry matter and ruminal crude protein degradability and microbial protein synthesis of some cowpea (Vigna unguiculata L. Walp) haulm varieties. Anim. Feed Sci. Technol., 163 (2-4), 161-169.
Aman, S. and A. Rab, (2013). Response of tomato to nitrogen levels with or without humic Acid. In Sarhad Journal Agriculture, 29(2):181–187.
Amer, M. N, A. G. El-Sanat and S. H. Rashad (2014). Effects of magnetized low quality irrigation water on some soil properties and soybean yield (Glycine max L.) under salt affected soils conditions. J. Soil Sci.and Agric. Eng., Mansoura Univ. 5 (10), 1377 – 1388.
Bashandy, T. and A.A. H. El-Shaieny (2016). Screening of Cowpea (Vigna unguiculata L. Walp) genotypes for salinity tolerance using field evaluation and molecular analysis. J. Agric. Chem. And Biotechn. Mansoura Univ. 7 (9), 249-255.
Dawa, K.; H. Abd El-Nabi and W. Swelam (2017).  Response  of tomato  plants  to irrigation  with magnetized water  and  some  foliar  application  treatments  under  drip  irrigation  system:  1- Vegetative  growth  and  chemical  constituents  of  leaves.  Journal of Plant Production, 8(11): 1127–1133.
El-Sagan, M.A.M. and A. Abd El-Baset,  (2015). Impact of magnetic on metal uptake, quality and productivity in onion crop. IOSR Journal of Agriculture and Veterinary Science, 8(9):  2319–2372.
Esitken, A. and Turan, M. (2004). Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria x ananassa cv. camarosa). Acta Agric. Scand., Sect. B, Soil and Plant Sci. 54: 135-139.
Gonçalves, A, P. Goufo, A. Barros, R. Domínguez- Perles, H. Trindade, E. Rosa, L.Ferreira and M. Rodrigues (2016). Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri-food system: nutritional advantages and constraints. Journal of the Science of Food and Agriculture, 96: 2941-2951.
Hozayn,  M., A.A. Abdel-Monem  and A.M.S.A.  Qados,  (2011). Irrigation with magnetized water, a novel tool for improving crop production in Egypt. World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability - Proceedings   of the 2011 World Environmental and Water Resources Congress, 4206–4222.
Jawad, A.T., H. A. Abbas, S. N. Abdullah, A.A. Abid Uon, S.A. Muhi, R.I. Jaafar and O.A. Musluh, (2014). The Effect of Magnetic Water for Chemical Fertilizer in Tomato Plant. Baghdad Science Journal, 11(2): 958–961.
Jayasinghe, H.  and A. Weerawansha,  (2018). Effect of compost and different NPK Levels on growth and yield of three tomato (Solanum lycopersicum) varieties in Sri Lanka. Journal of Advanced Agricultural Technologies, 5(2): 129–133.
Klute, A. (1986) Methods of soil analysis. Part 1. Physical and mineralogical methods (2nd edition). American Society of Agronomy Inc., Madison, Wisconsin, USA.
Kumar, M., M.L. Meena, S.S. Kumar, S.S.  Maji and D. Kumar (2013). Effect of nitrogen, phosphorus and potassium fertilizers on the growth, yield and quality of tomato var. Azad T-6. The Asian Journal of Horticulture, 8(2): 616–619.
Maheshwari, B.L. and H.S.  Grewal,  (2009).  Magnetic  treatment  of  irrigation  water:  Its  effects  on vegetable  crop  yield  and  water  productivity. Agricultural Water Management,  96(8):  1229-1236.
Ministry of Agriculture and Land Reclamation, Economic Affairs Sector (MALR) (2019). Bulletin of the agricultural statistics, Part 2. 382pp, Egypt.
Moussa, H.R. (2011) The impact of magnetic water application for improving common bean (Phaseolus vulgaris L.) production. New York Sci J, 4, 15-20.
Omid, S. (2016). The effect of magnetized water on physiological and agronomic traits of cowpea (Vigna unguiculata L.). Int’l Journal of Research in Chemical, Metallurgical and Civil Eng. 3 (2), 195 -198.
Page,  A.,  R.  Miller and D.  Keeny, (1982).  Methods of Soil Analysis,   Part 2:  Chemical and Microbiological Properties. American Society of Agronomy. Madison, Wi., USA.
Sadeghipour,  O.,  P. Aghaei  and  O. Sadeghipour,  (2013).  Improving  the  growth  of  cowpea  (Vigna unguiculata   L.  walp.)   by  magnetized   water.  Journal   of  Biodiversity   and  Environmental Sciences, 3(1): 37–43.
Sainju, U.M., R.R. Dris and B. Singh, (2003). Mineral nutrition of tomato. Food, Agriculture and Environment, 1(2): 176–184.
Selim,  Dalia  A., A.A.  Gendy,  A.M  Maria  and  E.M.  Mousa, (2009).  Response of pepper plants to magnetic technologies. In: 1st Nile Delta Conf. on Export Crops Faculty of Agriculture Minufiya University, pp. 89–104.
Selim, M.M., (2008). Application of magnetic technologies in correcting underground brackish water for irrigation in the arid and semi-arid ecosystem. The 3rd International Conference on Water Resources and Arid Environments, and the 1st Arab Water Forum, held at King Fahd Cultural Centre in Riyadh, Saudi Arabia: 1-11.
Seran, T.H. and M.S.M. Imthiyas,  (2016).  Effect  of different  doses of NK chemical  fertilizers  and compost  on  growth  and  yield  attributes  of tomato  (Lycopersicon  esculentum  Mill.).  Turkish Journal of Agriculture - Food Science and Technology, 4(6): 481-485.
Shahin, M. M. and A.M.A. Mashhour, (2016). Effect of magnetized irrigation water and seeds on some water properties, growth parameter and yield productivity of cucumber plants. Current Science International, 5(2):  152–164.
Shedeed,  S.I.;  S.M.  Zaghloul and A.A.  Yassen, (2009).  Effect  of  method  and  rate  of  fertilizer application  under  drip  irrigation  on  yield  and  nutrient  uptake  by  tomato.  Ozean Journal of Applied Sciences, 2(2): 139–147.
Takashenko, Y.  (1995).  The  application  of  magnetic  technology  in  agriculture  (Magnetizer).  Abu- Dhabi, UAE.
Teixeira da Silva, J.A. and J.  Dobránszki,   (2014). Impact of magnetic water on plant growth. Enviromental and Experimental Biology, 12(4): 137–142.
Waller, R. A. and D. B. Duncan, (1969). A bays rule for the symmetric multiple comparison problem. Journal of the American Statistical Association. No. 64: 1485-1504.
Wang HY and Zhou JM. (2014). Calculation of real fertilizer use efficiency and discussion on fertilization strategies. Acta Pedologica Sinica. 2014;51(2):10–9.
Yadollahpour, A, S. Rashidi and K. Fatemeh. (2014). Applications of magnetic water technology in farming and agriculture development: A Review of recent advances. Current World Envir. 9 (3), 695-703.
Yusuf,  K.O.   and   A.O. Ogunlela,  (2015).  Impact  of magnetic  treatment  of irrigation  water  on the growth and yield of tomato. Notulae Scientia Biologicae, 7 (3): 345–348.
Yusuf, K.O. and  A.O. Ogunlela,   (2017a). Effects of magnetized water on the vegetative growth and yield of tomato. Agricultural Engineering International CIGR Journal, 19(1): 1–8.
Yusuf, K.O. and A.O. Ogunlela, (2017b). Effects of deficit irrigation on the growth and yield of tomato (Solanum lycopersicum) irrigated with magnetized water. Environmental  Research Engineering and Management, 73(1): 59–68.
Zhang, X.; S. Chen; M. Liu; D. Pei and H. Sun (2005). Improved water use efficiency associated with cultivars and agronomic management in the north China plain. Agronomy J. 97:783–790.