INFLUENCE OF OPAQUE PHOTOVOLTAIC SHADING ON MICROCLIMATE AND GROWTH OF STRAWBERRY IN GREENHOUSES

Document Type : Original Article

Authors

1 Assoc. Prof. Ag. Eng. Dep., Fac. Ag., Cairo U., 12613 Giza. Egypt.

2 Prof. Sol. Eng. Res. Inst., Yunnan Normal U., Kunming 650500, China

Abstract

The effect of photovoltaic PV panels on strawberry growth and the greenhouse microclimate has been studied meanwhile; the annually generated electric energies were estimated by the PolySun program. The peak power of the opaque PV was 310 W. There were four PV panels distributed on the top of greenhouse south plastic roof at a vertical distance of 0.08 m as an isolated air layer under the PV panels at a tilt angle of 30 ͦ.  Meanwhile at a horizontal distance between panels of 1.1 m to allow the solar light entering greenhouse. Results revealed that the greenhouse air temperature and solar radiation under the un-shaded greenhouse were higher than that of the shaded greenhouse by opaque PV. Moreover, the opaque PV temperatures ranged from 45 ᵒC to 47.5 ᵒC. The simulation results showed that the annual generated electric energy of the opaque PV panels was 3195 kWh which could cover approximately 30.4% of the annual electric energy demand for environmental control. In addition, there were no significant differences in the number of leaves, flowers including fruits, and chlorophyll contents between strawberries under the shaded and un-shaded greenhouses. In a word, the integration of opaque PV at a specific distribution is highly recommended to provide the required light for photosynthesis and energy for greenhouse without harming the growth of strawberries.

Keywords

Main Subjects


Ahemd H.A., Al-Faraj A.A., Abdel-Ghany A.M. (2016) 'Shading greenhouses to improve the microclimate, energy and water saving in hot regions: A review'. Sci Hortic-Amsterdam 201:36-45. DOI: http://dx.doi.org/10.1016/j.scienta.2016.01.030.
Al-Ibrahim A., Al-Abbadi N, Al-Helal  I. (2006)' PV greenhouse system, system description, performance and lesson learned'. Acta Hortic (ISHS) 710:251-264.
Al-Rousan N., Isa N.A.M., Desa M.K.M. (2018) 'Advances in solar photovoltaic tracking systems: A review'. Renew Sustain Energy Rev. 82:2548-2569. DOI: https://doi.org/10.1016/j.rser.2017.09.077.
Al-Shamiry F., et al. (2007) 'Design and development of photovoltaic power system for tropical greenhouse cooling'. Am J Appl Sci 4:386–389.
Babatunde A.A., Abbasoglu S., Senol M. (2018) 'Analysis of the impact of dust, tilt angle and orientation on performance of PV Plants'. Renew Sustain Energy Rev.90:1017-1026. DOI: https://doi.org/10.1016/j.rser.2018.03.102.
Breyer C., Koskinen O., Blechinger P. (2015) 'Profitable climate change mitigation: The case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems'. Renew Sustain Energy Rev 49:610-628. DOI: http://dx.doi.org/10.1016/j.rser.20.15.04.061.
Chanchangi Y.N., et al. (2020) 'Dust and PV Performance in Nigeria: A review'. Renew Sustain Energy Rev. 121:109704. DOI: https://doi.org/10.1016/j.rser.2020.109704.
Cossu M., et al. (2017) 'An algorithm for the calculation of the light distribution in photovoltaic greenhouses'. Solar Energy 141:38-48. DOI: http://dx.doi.org/10.1016/j.solener.2016.11.024.
Cossu M., et al. (2014) 'Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity'. Appl Energ 133:89-100. DOI: http://dx.doi.org/10.1016/j.apenergy.2014.07.070.
Dida M., et al. (2020) 'Output power loss of crystalline silicon photovoltaic modules due to dust accumulation in Saharan environment'. Renew Sustain Energy Rev.124:109787. DOI: https://doi.org/10.1016/j.rser.202.0.109787.
Ghoulem M., et al.(2019) 'Greenhouse design and cooling technologies for sustainable food cultivation in hot climates: Review of current practice and future status'. Biosystems Engineering 183.121- 150. DOI: https://doi.org/10.1016/j.biosystemseng.2019.04.016.
Giampieri F., et al. (2012) 'The strawberry: Composition, nutritional quality, and impact on human health'. Nutrition 28:9-19. DOI: http://dx.doi.org/10.1016/j.nut.2011.08.009.
Hasan Ismaeel H., Yumrutaş R. (2020) 'Investigation of a solar assisted heat pump wheat drying system with underground thermal energy storage tank'. Solar Energy 199:538-551. DOI: https://doi.org/10.1016/j.solener.2020.02.022.
Hassanien R.H.E., Li M., Dong Lin W. (2016) 'Advanced applications of solar energy in agricultural greenhouses'. Renew Sustain Energy Rev. 54:989-1001. DOI: http://dx.doi.org/10.1016/j.rser.2015.10.095.
Hassanien R.H.E., Li M., Tang Y. (2018a) 'The evacuated tube solar collector assisted heat pump for heating greenhouses'. Energy and Buildings 169:305-318. DOI: 10.1016/j.enbuild.2018.03.072.
Hassanien R.H.E., Li M., Yin F. (2018b) 'The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production'. Renewable Energy 121:377-388. DOI: 10.1016/j.renene.2018.01.044.
Kadowaki M., et al. (2012) 'Effects of greenhouse photovoltaic array shading on Welsh onion growth'. Biosyst Eng 111. 290-297. DOI: http://dx.doi.org/10.1016/j.biosystemseng.2011.12.006.
Khanlari A., et al. (2020) 'Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater'. Journal of Cleaner Production 251:119672. DOI: https://doi.org/10.1016/j.jclepro.2019.119672.
Ledesma N.A., Kawabata S. (2016) 'Responses of two strawberry cultivars to severe high temperature stress at different flower development stages'. Scientia Horticulturae 211:319-327. DOI: http://dx.doi.org/10.1016/j.scienta.2016.09.007.
Li C., et al. (2017) 'The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China'. Appl Energy 190:204-212. DOI: http://dx.doi.org/10.1016/j.apenergy.2016.12.121.
Marrou H., Dufour L., Wery J. (2013) 'How does a shelter of solar panels influence water flows in a soil crop system?' Eur J Agron 50:38-51. DOI: http://dx.doi.org/10.1016/j.eja.2013.05.004.
Paul W. Stackhouse J (2015). NASA Surface meteorology and Solar Energy.
Pérez-Alonso J., et al. (2012) 'Performance analysis and neural modelling of a greenhouse integrated photovoltaic system'. Renew Sustain Energy Rev.16:4675-4685. DOI: https://doi.org/10.1016/j.rser.2012.04.002.
Raúl U.S., et al. (2012) 'Greenhouse tomato production with electricity generation by roof-mounted flexible solar panels'. Sci Agr 69:233-239.
Reca J., et al. (2016) 'Feasibility analysis of a standalone direct pumping photovoltaic system for irrigation in Mediterranean greenhouses'. Renewable Energy 85:1143-1154. DOI: https://doi.org/10.1016/j.renene.2015.07.056.
Rylski I., Spigelman M. (1986) 'Effect of shading on plant development, yield and fruit quality of sweet pepper grown under conditions of high temperature and radlation'. Scientia Horticulturae 29:31-35. DOI: https://doi.org/10.1016/03.2-90028(86)4238-04.
Sivakumar D., Jifon J. (2018) Chapter 5 - Influence of Photoselective Shade Nettings on Postharvest Quality of Vegetables, in: M. W. Siddiqui (Ed.), Preharvest Modulation of Postharvest Fruit and Vegetable Quality, Academic Press. pp. 121-138.
Sonneveld P.J., et al. (2010) 'Performance results of a solar greenhouse combining electrical and thermal energy production'. Biosy Eng 106:48-57. DOI: http://dx.doi.org/10.1016/j.biosystemseng.2010.02.003.
Tang Y., et al. (2020) 'The effect of temperature and light on strawberry production in a solar greenhouse'. Solar Energy 195:318-328. DOI: https://doi.org/10.1016/j.solener.2019.11.070.
Thotakura S., et al. (2020) 'Operational performance of megawatt-scale grid integrated rooftop solar PV system in tropical wet and dry climates of India'. Case Studies in Thermal Engineering 18:100602. DOI: https://doi.org/10.1016/j.csite.2020.100602.
Trypanagnostopoulos G., et al. (2017) 'Greenhouse performance results for roof installed photovoltaics'. Renew Energy 111:724-731. DOI: https://doi.org/10.1016/j.renene.201.7.04.066.
Waller R., et al. (2021) 'Semi-Transparent Organic Photovoltaics Applied as Greenhouse Shade for Spring and Summer Tomato Production in Arid Climate'. Agronomy 11:1152.
Yano A., et al. (2009) Electrical energy generated by photovoltaic modules mounted inside the roof of a north–south oriented greenhouse. Biosyst Eng (103):228-238. DOI: http://dx.doi.org/10.1016/j.biosystemseng.2009.02.020.
Yano A., et al. (2010) 'Shading and electrical features of a photovoltaic array mounted inside the roof of an east–west oriented greenhouse'. Biosyst Eng (106):367-377. DOI: http://dx.doi.org/10.1016/j.biosystemseng.2010.04.007.
Yano A., Onoe M., Nakata J. (2014) 'Prototype semi-transparent photovoltaic modules for greenhouse roof applications'. Biosyst Eng (122):62-73. DOI: http://dx.doi.org/10.1016/j.biosystemseng.2014.04.003.