DRYING OF SQUASH USING SOLAR TUNNEL DRYER WITH PHOTOVOLTAIC

Document Type : Original Article

Authors

1 Agricultural engineering dept., faculty of agriculture, Tanta University, Egypt.

2 Agricultural engineering dept., University of agricultural sciences and veterinary medicine, Bucharest, Romania.

Abstract

Experimental solar tunnel dryer (type Hohenheim 2x18 m) with photovoltaic-module and integrated air heat collector has been installed at the department of agricultural engineering, university of agronomic sciences and veterinary medicine, Bucharest, Romania to study and evaluate the squash drying process. The obtained results indicated that, there is an inversely relation between the air relative humidity and both the air temperature and the intensity of solar radiation. The maximum difference between the drying air temperature and ambient temperature was 30 ºC afternoon (14.20 h) at two different thicknesses of squash slices (0.5 and 1 cm). The higher rate of moisture removal was 80 kg/h in case of 1 cm thick of squash slices at the first two hours. On the other hand, it was         45 kg/h in case of 0.5 cm thick of squash slices at the first three hours. The potassium and phosphor ratios increased in the dried squash as compared with the fresh squash. Whilst, the nitrogen ratio decreased in thicknesses of slices and the minimum value was found with 0.5 cm thick. The solar tunnel dryer can be used to enhance the quality of agricultural dried crops. The production of dried crops is a promising alternative method to sale as compared with the fresh produce.

Keywords

Main Subjects


Adam, E. 1998: Solar Drying of Sliced Onion and Quality Attributes as Affected by the Drying Process and Storage Conditions. Dissertation, Forschungsbericht Agrartechnik des Arbeitskreises Forschung und Lehre der Max-Eyth- Gesellschaft Agrartechnik im VDI, nr. 328, Hohenheim, Germany.
Esper, A. and W. Mühlbauer 1993: Development and dissemination of solar tunnel dryers. Proceedings of Expert Workshop on Drying and Conservation with Solar Energy, p. 63-74, Budapest, Hungary.
Esper, A.; O. Hensel and W. Mühlbauer 1994: PV-Driven Solar Tunnel Dryer. Agricultural Engineering Conference, Bangkok, December 6-9.
Häuser, M. 1995: Trocknung von Aprikosen mit Solarenergie. Dissertation. Forschungsbericht Agrartechnik des Arbeitskreises Forschung und Lehre der Max-Eyth-Gesellschaft Agrartechnik im VDI. No. 273, Hohenheim, Germany.
Linchk, G. 1993: Thermodynamische Optiemierung von Luftkollektoren für solare Trocknungsanlage. Dissertation, Forschungsbericht Agrartechnik des Arbeitskreises Forschung und Lehre der Max-Eyth- Gesellschaft (MEG), nr. 207, Hohenheim, Germany.
Lutz, K. and W. Mühlbauer 1988: Solare Trocknung landwirtschaftlicher Erzeugnisse. Entwicklung und ländlicher Raum, vol 22(6):9-12.
Mitroi, A.; A. Udroiu and C. Iacomi2000: Utilizarea in Romania a uscatorului solar de tip tunel pentru produse agricole. Revista Mecanizarea Agriculturii, nr. 6, p.19-22.
Reuss, M. 1993: Solar drying in Europe-Proceedings of expert workshop on drying and conservation with solar energy, p. 89-110, Technical University of Budapest, Hungary.
Udroiu, N. A. 2002: Solare Trocknung von Pflaumen in Rumänien. Teza de doctorat, USAMV-Bucuresti, Romania.