EVALUATION OF SPRAY DISTRIBUTION FOR LOW PRESSURE EMTF NOZZLES

Document Type : Original Article

Author

Assis. Prof. in Agric. Eng. Dept., Fac, of Agriculture, Kafrelsheikh Univ., Egypt

Abstract

The full automatic patternometer was used with ultrasonic sensor and compatible software program to measure the spray distribution from different EMTF nozzles under conditions of JKI laboratory in Germany. The goals of present study are measured spray distribution of the EMTF nozzles using the full automatic patternometer single nozzle test, by comparing the distribution profiles of sprays from EMTF nozzles those from standard fan nozzles. As well as investigating to find the optimum combination for EMTF nozzles from the available nozzles in the marketing which may be produced a good uniformity spray distribution. The current investigation research was cared out in the Federal Biological Research Centre for Agriculture and Forestry (JKI), Braunschweig, Germany. The full automatic patternometer was adapted at the optimum air conditions, 20° C air temperature and 80 % relative humidity. Eight external mixing twin fluid nozzles were evaluated in a patternometer single nozzle test to compare spray distribution. Each tip was compared at 60 kPa liquid pressure, parallel to a 150 kPa and 200 kPa air pressure for each. Two levels for nozzle height 50 cm and 70 cm, and co-angling 45° and 60° was treated and studied their effect with the interaction of both nozzles and air pressure on coefficient of variation percent. The results indicated that the minimum CV % values for good spray distribution were 10.6 %, 12.9 % and 14.0 % for EMTF nozzle N8, N3 and N7 at 50 cm nozzle height, 45° co-angling and 200 air pressure respectively. The EMTF nozzle N8 produced the CV % nearly the standard ISO nozzle CV percentages values. The uniformity spray distribution CV percent  values for N8 (Lechler FT 5–608 & DG800-04 VK) nozzle at the optimum co-angling 45°were 11.0 % and 12.1% at 50 cm and 70 cm nozzle height respectively.
As well as, there are non effects of the interaction of air pressures with the all factors on the CV percentage.  It may therefore be concluded that the CV % values are more strongly dependant on the combinations of nozzles in the EMTF nozzles, which is highly significant in data.

Keywords

Main Subjects


Alford, J; Miller, P C H; Goulson, D; Holland, J M (1998): ‘ Predicting susceptibility of non- target  insect  species  to  different  insecticide  application  in  winter  wheat.’  Proc Brighton Conf – Pests and Diseases. pp 599 – 604.
Chapple, A C; Downer, R A; Hall F R (1993): ‘Effects of spray adjuvants on swath patterns and droplet spectra for a flat fan hydraulic nozzle.’   Crop Protection, 12. pp 579 –590.
Combellack, J H; Miller, P C H (2001): ‘Effect of adjuvants on spray patternation and the volume of air inducted by selected nozzles.’  Proc Sixth Int Symposium on Adjuvants for Agrochemicals. pp 557 – 562.
Czacyk,  Z;  Kramer,  H;  Kleisinger,  S  (2002):  ‘Comparison  of  two  abrasive  materials  for testing nozzle wear.’  Aspects of Applied Biology, 66. pp 457 – 461.
Dorr, G J and Pannell, D J (1992): ‘Economics of improved spatial distribution of herbicide for weed control in crops.’  Crop Protection, 11. pp 385 – 390.
Downer, R A; Ebert, T A; Thompson, R S; Hall, F R (1997): ‘Herbicide spray distribution, quality and  efficacy  interactions;  conflicts  in  requirements .’Aspects  of  Applied Biology, 48. pp 79 – 89.
Enfalt, P; Engqvist, A; Alness, K (1997a): ‘Assessment of the dynamic spray distribution on a flat surface using image analysis.’  Aspects of Applied Biology, 48. pp 17 – 24.
Enfalt, P; Engqvist, A; Bentsson, P (1997b): ‘The influence of spray distribution and drop size  on the  dose  response  of  herbicides.’Proc  Brighton  Crop  Protection  Conf  – Weeds. pp 381 – 389.
Ford, M G and Salt, D W (1987): ‘The behavior of insecticide deposits and their transfer from plant to insect surfaces.’   In ‘Pesticides on plant surfaces.   Critical reports in applied chemistry.’  Ed H Cottrell.  John Wiley.
Hagenvall, H (1981): ‘Uneven spraying – effects on yield and weeds.’   Proc 22nd Swedish Weed Conf (Reports). pp 96 – 105.
Herbst,  A;  Wolf,  P  (2001):  ‘Spray  deposit  distribution  from  agricultural  boom  sprayers  in dynamic conditions.’  ASAE Meeting Paper 01 – 1054.
Holland, J M; Jepson, P C; Jones, E C; Turner, C (1997): ‘A comparison of spinning disc atomisers and flat fan pressure nozzles in terms of pesticide deposition and biological efficacy within cereal crops.’  Crop Protection, 16. pp 179 – 185.
Koch, H (1992): ‘Uber die Bedeutung von geratetechnisch determinierten and stochastisch ablaufenden Prozessen des Applikationsvorgangs für Dosierung und Veritelung von Pflanzenschuzmitteln.’  Gesunde Pflanzen, 44. pp 350 – 360.
Koch,  H;  Weisser,  P  (1996):  ‘Dosierung  und  Applikationsqualitat  bei  Verwendung  einer Laborspritzbahn  in  der  Prufung  von  Pflanzenschutzmitteln.’Nachrichtenbl.  Deut. Pflanzenschutzd, 48. pp 176 – 180.
Knott, L (1978): ‘Einfluss horizontaler Spritzgestangeschwankungen auf die Langsverteilung.’ Gesunde Pflanzen, 30. pp 42 – 48.
Krueger,  H  R;  Reichard,  D  L  (1985):  ‘Effect  of  formulations  and  pressure  on  spray distribution  across  the  swath  with  hydraulic  nozzles .’Pesticide  Formulations  and Application Systems: Fourth Symposium. pp 113 – 121. ASTM.
Lloyd, G A; Bell, G J; Howarth, J A; Samuels, S W (1988): ‘Rotary atomisers: comparative spray drift study.’  MAFF.
Lund, I; Jensen, P K (2002): ‘Application technology for band spraying: Correlation between liquid band distribution and biological efficacy.’  Aspects of Applied Biology, 66. pp 107 – 114.
Murphy, S D; Miller, P C H; Parkin, C S (2000): ‘The effect of boom section and nozzle configuration on the risk of spray drift.’ Journal of Ag Engineering Research, 75. pp 120–137.
Nilars,  M  S  (2002):  ‘Some  nozzle  performance  considerations  when  using  wide  booms  at higher spraying speeds.’  Aspects of Applied Biology, 66. pp 95 – 106.
Nordbo, E; Taylor, W A (1991): ‘The effect of air assistance and spray quality (drop size) on the  availability,  uniformity  and  deposition  of  spray  on  contrasting  targets.’   BCPC Mono 46. pp 113 – 124.
Nordbo, E (1992): ‘Effects of nozzle size, travel speed and air assistance on deposition on artificial vertical and horizontal targets in laboratory experiments.’ Crop Protection, 11. pp 272 – 278.
Ozkan, H E; Reichard, D L and Sweeney, J S (1992a): ‘Droplet size distribution across the fan patterns of new and worn nozzles.’  Trans of the ASAE, 35 (4). pp 1097 – 1102.
Ozkan,  H  E;  Reichard,  D  L and  Ackerman,  K  D  (1992b):  ‘Effect  of  orifice  wear  on  spray patterns from fan nozzles.’  Trans of the ASAE, 35 (4). pp 1091 – 1096.
Richards,  M  D;  Hislop,  E  C and  Western,  N  M  (1997):  ‘Static  and  dynamic  patternation  of hydraulic pressure nozzles.’  Aspects of Applied Biology, 48. pp 201 – 208.
Richardson,  R  G; Combellack J. H and  Andrews, L (1985):  ‘Evaluation  of  a  spray  nozzle patternator.’  Crop Protection, 5. pp 8 – 11.
Richardson, B; Schou, W C and Kimberley, M O (2000): ‘Defining acceptable levels of spray deposit variation  from  aerial  herbicide  applications. ’ASAE  Meeting  Paper  00  –1054.
Ringel, R; Taylor, W A and Andersen, P G (1991): ‘Changing spray deposits from horizontal to vertical surfaces at  ground  level  within  cereal  rows  using  air  assistance. ’BCPC Mono 46. pp 297 – 298
Sehsah E.M.E. and S. Kleisinger (2009): Study of some parameters effect on spray uniformity distribution pattern. Misr J.Ag.Eng., 26 (1):    -
Sehsah E.M.E. and S. Ganzelmeier (2010):  Comparison study on Low Pressure EMTF Nozzles based on Droplets Size Characteristics, Misr J.Ag.Eng., 27 (2):     -
Sinfort, C and Herbst, A (1996): ‘Evaluation of the quality of spray distribution from boom sprayers in practical conditions.’  EPPO Bull 26. pp 27 – 36.