DESIGN AND MANUFACTURE A PROTOTYPE OF YEMENI COFFEE HULLER MACHINE

Document Type : Original Article

Author

Prof. Dr. of Agric. Eng. Dept., Faculty of Agriculture Sana’a Univ., Yemen.

Abstract

The design, construction and development of a huller is described in this paper. Some engineering properties were studied as important parameters affecting the design of the huller machine, and the results showed that, the highest frequency length, width and thickness of the coffee grains were 1.0, 0.7 and 0.7 cm.  The medium size (from 7-10 mm) was denser than both small and large sizes of coffee as the porosity of that size was lower than those of both small and large sizes.  The angle of repose increased with the decrease of coffee size.  It ranged from 8.75 to 14.30 degrees on the glass surface. The huller consists basically of a drum, hopper, fan, motor, frame, belts and pulleys. It was tested at different speeds and feeding rated.  The results indicated that the huller productivity increased with increasing the drum rotation speed and feeding rate.  The productivity ranged from 240-360 kg/h. It could be used for hulling the coffee beans at higher rotation speeds with high efficiency.

Keywords

Main Subjects


Abd Alla, H. El-Shabrawe.  1993.  Effect of coating process on seeds viability and some physio-mechanical properties of Egyptian cotton.  J. Agric. Sci. Mansoura Univ., 18(8):2384-2396.
Abd Alla, H. El-Shabrawe, S. M. Radwan and E. H. El-Hanfy.  1995.  Effect of some physical properties of rice grains on milling quality. Misr J. of Agr. Eng., 12(1):143-155.
AOAC (1990) Association of official analytical chemists. 5th Edt., 1990 Pub. by the Association of Official  Analytical Chemists, Suite 400.
Banks, M., C. McFadden and C. Atkinson, (1999) The world encyclopaedia of coffee, Anness Publishing Limited, London (1999).
Chandrasekar, V. and R. Viswanathan. 1999.  Physical and thermal properties of coffee.  J. Agric. Engng Res. 73, 227-234.
Clifford, M. N. (1985). Chlorogenic acids. In: R. J. Clarke, R. Macrae (Eds.), Coffee, Vol 1: Chemistry (pp. 153–202). London: Elsevier Applied Science.
De Maria, Trugo, Aquino Neto, Moreira, & Alviano (1996) Composition of green coffee water-soluble fractions and identification of volatiles formed during roasting, Food Chemistry 55 (1996) (3), pp. 203–207.
Bayindirli, L., Bayindirli, A., Sahin, S., Sumnu, G., & Gider, S. (1996).  Studies on caustic peelingof apples. Journal of Food Science and Technology, 33, 240–242.
Ben-Shalom, N., Levi, A., & Pinto, R. (1986). Pectolytic enzyme studies for peeling of grapefruit segment membrane. Journal of Food Science, 51, 421–423.
Bolin, H. R., & Huxoll, C. C. (1991). Control of minimally processed carrot (Daucus carota) surface discoloration caused by abrasion peeling. Journal of Food Science, 56, 416–418.
Box, G. E. P., & Draper, N. R. (1987). Empirical model-building and response surfaces. New York: Wiley.
Floras, J. D., & Chinnan, M. S. (1988a). Seven factor response surface
optimization of a double-stage lye (NaOH) peeling process for pimiento peppers. Journal of Food Science, 53, 631–638.
Floras, J. D., & Chinnan, M. S. (1988b). Microstructural changesduringsteam peelingof fruits and vegetables. Journal of Food Science, 53, 849–853.
Floras, J. D., & Chinnan, M. S. (1990). Diffusion phenomena duringchemical (NaOH) peelingof tomatoes. Journal of Food Science, 55, 552–553.
Floras, J. D., Wetzstein, H. Y., & Chinnan, M. S. (1987). Chemical (NaOH) peelingas viewed by scanning electron microscopy: Pimiento peppers as a case study. Journal of Food Science, 52,1312–1316.
Garrote, R. L., Coutaz, V. R., Luna, J. A., Silva, E. R., & Bertone, R. A. (1993). Optimizingprocessing conditions for chemical peelingof potatoes using response surface methodology. Journal of Food Science, 58, 821–826.
Garrote, R. L., Coutaz, V. R., Silva, E. R., & Bertone, R. A. (1994). Determiningprocess conditions for chemical peelingof asparagus. Lebensmittel-Wissenschaft und Technologie, 27, 19–22.
Garrote, R. L., Silva, E. R., Bertone, R. A., & Avalle, A. (1997). Effect of time and number of cycles on yield and peelingquality of steam peeled potatoes and asparagus. Lebensmittel-Wissenschaft und Technologie, 30, 448–451.
Janser, E. (1996). Enzymatic peelingof fruit. Food Processing, 3, 1–4.
Javeri, H., Toledo, R., & Wicker, L. (1991). Vacuum infusion of pectinmethylesterase and calcium effects on firmness of peaches. Journal of Food Science, 56, 739–742.
Mcardle, R. N., & Culver, C. A. (1994). Enzyme infusion: A developingtechnolog y. Food Technology, 8, 85–89.
Myers, R. H. (1971). Response surface methodology. Boston: Allyn and Bacon Inc.
Pretel, M. T., Lozano, P., Riquelme, F., & Romojaro, F. (1997). Pectic enzymes in fresh fruit processing: Optimization of enzymic peeling of oranges. Process Biochemistry, 32, 43–49.
Rouhana, A., & Mannheim, C. H. (1994). Optimization of enzymatic peelingof grapefruit. Lebensmittel-Wissenschaft und Technologie, 27, 103–107.
Schlimme, D. V., Corey, K. A., & Frey, B. C. (1984). Evaluation of lye and steam peelingusingfour processing tomato cultivars. Journal of Food Science, 49, 1415–1418.
Setty, G. R., Vijayalakshmi, M. R., & Devi, A. U. (1993). Methods for peelingfruits and vegetables: A critical evaluation. Journal of Food Science and Technology, 30, 155–162.
Soffer, T., & Mannheim, C. H. (1996). Optimization of enzymatic peelingof oranges and pomelo. Lebensmittel-Wissenschaft und Technologie, 27, 245–248.
Thompson, D. (1982). Response surface experimentation. Journal of Food Processing and Preservation, 6, 155–188.
Dutta, S. K., Nema. V. K. and R. K. Bhardwaj.  1972.  Physical properties of gram.  J. Agric. Eng. Res. 12, 128-137.
El- Raie, A. E.S., Hendawy, N. A. and A.Z. Taib.  1996.  Study of physical and engineering properties for some agricultural products.  Misr J. of Agr. Eng., 13(1):211-226.
Eskes, A. B. and Mukred, A. W. O.  1989.  Coffee survey in PDR Yemen. ASIC, 13, Colloque, Piape, pp 582-590.
Franca, A. S., Oliveira, Mendonça, J.C.F., & Silva (2004) Physical and chemical attributes of defective crude and roasted coffee beans, Food Chemistry 90 (2004) (1–2), pp. 84–89.
Gosh, B. N.  1969. Physical properties of the different grades of arabica beans.  Transactions of the ASAE, 9(3):592-593.
Helmy, M. A.  1995. Determination of static friction coefficient of some Egyptian agricultural products on various surfaces. Misr J. of Agr. Eng., 12(1):267-282.
Irvine, D. A., D. S. Jayas, N. D. G. White and M. G. Britton. 1992.   Physical properties of flaxseed, lentils, fababeans. Can. Agric. Eng. 34(1):75-82.
Korayem, A. Y.  and S. N. Soliman.  1983.  Effect of rough rice on its physical properties.  Com. Agrisic, Dev. Res.  Vol (5).
Kukelko, D.D.S. Jayas, N. D. G. White and M. G. Britton.  1988.  Physical properties of Canola (Rapeseed) meal. Can. Agric. Eng. 30(1):61-64.
Ky, C. L., J. Louarn, S. Dussert, B. Guyot, S. Hamon and M. Noirot, (2001) Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild coffea arabica L. and coffea canephora P. accessions, Food Chemistry 75 (2001), pp. 223–230.
Lingle T.R. (1993) The basics of cupping coffee, Specialty Coffee Association of America, Long Beach (1993).
Macrae (1985). Nitrogenous compounds. In: R.J. Clarke, & R. Macrae (Eds.), Coffee, Vol 1: Chemistry (pp. 115–152). London: Elsevier Applied Science.
Martín, Pablos, & González (1998) Discrimination between arabica and robusta green coffee varieties according to their chemical composition, Talanta 46 (1998), pp. 1259–1264.
Mohsenin, N. N. 1970.  Physical properties of plant and animal materials.  New York, Gordon and Breach, Sc. Pub. Pp, 51-87, 889.
Muir, W. E. and R. N. Sinha.  1988.  Physical properties of cereal and oilseed cultivars grown in western Canada. Can. Agric. Eng. 30(1):51-55.
Odunfa, S. A. 1985.  African fermented foods.  In : Microbiology of fermented foods (Wood, B. J. ed.) vol. 2, pp. 155-191, Elsevier, Amsterdam.
Oje, K. and E. C. Ugbor.  1991.  Some physical properties of oil bean seed. J. Agric. Eng. Res. 50, 305-313.
Rodrigues, M. A. A., Borges, M. L. A., Franca, A. S., Oliveira, L. S. & Correa, P. C. (2003). Evaluation of physical properties of coffee during roasting. Agricultural Engineering International: The CIGR Journal Of Scientific Research And Development, 5, Manuscript FP 03004, 12pp.
Sivetz, & Desrosier (1979) M. Sivetz and N.W. Desrosier, Coffee technology, Avi Publishing Co, Westport, Co (1979).
Stennert A. and H.G. Maier, (1996). Trigonelline in coffee. III. Calculation of the degree of roast by trigonelline/nicotinic acid ratio. New gas chromatographic method for nicotinic acid, Zeitschrift für Lebensmitteluntersuchung und –Forschung A 202 (1996), pp. 45–47.
Sylvian, P. G.  1956.  Le Café du Yemen.  L’ Agronomie Tropicale XI(1):62-73.