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AND HIGH RESOLUTION SATELLITE IMAGERY TO 

DETECT STRESS IN WHEAT IN EGYPT  
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ABSTRACT 

Mapping and detecting stress at both local and regional scales are very 

important in site specific management. Launching the first generation of 

high spatial and spectral resolution remote sensing satellite at the 

beginning of the 21
st
 century provides the opportunity to have better 

understanding of crop stress and the extent of stress in a specific 

environment. This work was carried out to  assess the ability of 

hyperspectral and high spatial resolution remote sensing imagery to 

detect stress in wheat in the Nile Delta of Egypt. A field work visit was 

undertaken during winter season of 2007 in March (5-30: wheat) to collect 

ground reference data including soil samples, vegetation samples, water 

samples, chlorophyll estimates, reflectance measurements and GPS 

coordinates. The work visit was timed to coincide with the acquisition of 

QuickBird satellite imagery (7 April, 2007). The results further showed that 

the QuickBird image successfully detected stress within field and local 

scales, and therefore can be a robust tool in identifying issues of crop 

management at a local scale. a strong linear relation between RVI derived 

from in situ and RVI derived from satellite data (R = 0.75; p = 0.000). The 

results further showed that MLC is an effective classification algorithm for 

differentiating different crops within the study area.  

INTRODUCTION 

aximising crop production at a minimum cost is very 

important for farmers. Mapping and predicting yield at an 

early growth stage is therefore essential for farmers to take 

decisions to improve their agricultural practices. Monitoring plant status 

by means of remotely sensed data will enable farmers to maintain 

optimal levels of soil moisture and nutrients and avoid overuse of 

different chemicals, which potentially contaminate soil and water. 
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 A further advantage is the possibility to quantify the amount of grain 

needed to satisfy population demand. It is therefore evident that using 

satellite imagery could be a robust tool in site specific management in the 

Nile Valley and Delta of Egypt. The improvements and advances in 

satellite sensor technology providing higher resolution (e.g. QuickBird 

and Ikonos sensors) can perhaps provide a useful tool in site specific 

management. These two satellite sensors have significantly narrowed the 

gap in spatial resolution between satellite and airborn imagery (Yang et 

al., 2006). The advantage of these satellites is the revisit period (1-3 

days), which was difficult to be accomplished with many other satellite 

systems (Moran, 2000). Some researchers used QuickBird satellite 

images for detecting biochemical and biophysical properties in crops 

(Wu et al., 2007a; Wu et al., 2007b). Yang et al. (2006a and 2006b) 

investigated the potential of QuickBird satellite images to predict and 

map cotton and grain sorghum yield patterns; they established strong 

correlations between vegetation indices derived from QuickBird images 

and both crop yields. Recently, hyperspectral satellite images such as 

Hyperion have been used in monitoring vegetation; this satellite has more 

than 200 spectral bands, which enable the construction of effective 

continuous spectra for every pixel in the scene. This will enable 

researchers to develop new vegetation indices for detecting stress in 

crops and facilitate the process of distinguishing different sources of 

stress in crops such as moisture induced stress from salinity induced 

stress. Bannari et al. (2008) developed several spectral indices to 

quantify chlorophyll concentration of wheat crops at both the canopy and 

the leaf scales using remotely sensed data. These chlorophyll indices 

were derived from Hyperion imagery and the results demonstrated that 

NDPI is the best index for estimating wheat chlorophyll concentration. 

The overall aim of our research was to assess the efficiency of in situ 

hyperspectral measurements and high resolution satellite remote sensing 

imagery to detect stress in wheat in the Nile Delta of Egypt.  The specific 

objectives of this study were to:  

(1) evaluate whether in situ hyperspectral measurements can detect stress 

in wheat (2) Assess the efficiency of classification algorithms to map 

different crop types and (3) Having mapped individual crop types 
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through remote sensing, predict wheat biophysical and biochemical 

properties via remotely sensed data.  

MATERIAL AND METHODS 

Study area 

The study area is located in south-west Alexandria, Egypt (latitude of 30° 

55` 50`` and longitude of 29° 53` 35.6``). To have a range of stress levels 

in fields, three study sites were chosen; Naser, Kahr and Bangar. The soil 

at these sites is a sandy loam with low concentration of nitrogen, as these 

sites have been reclaimed recently from the eastern desert. The majority of 

the fields within the study area use flood irrigation with a few farms 

irrigated by sprinkler or trickle irrigation, especially at the Bangar site. The 

weather in this area is characterised by hot summers and mild winters. 

 In situ hyperspectral measurements and sampling strategy 

An in situ hyperspectral survey was undertaken in the study area during 

the winter growing season of 2007 (8-30 March) concurrent with the 

acquisition of satellite imagery. The hyperspectral survey was conducted 

in random fields depending on the size of the field and the status of these 

fields in terms of stress. An ASD FieldSpec hand-held spectroradiometer 

was used to measure reflectance from plant canopies. The reflectance 

measurements were restricted between 10 am and 3 pm to minimise the 

influence of changes in solar zenith angle. During the in situ 

hyperspectral survey, the sensor was kept at a constant distance from the 

soil surface using an iron stand of 2 m height. Vegetation samples were 

collected immediately after measuring reflectance from plant canopies to 

quantify biomass, plant height and Leaf Area Index (LAI). Soil and water 

samples at each site were also collected for chemical analysis. 

Chlorophyll determination  

For the measurement of chlorophyll concentrations during field work in 

Egypt, a hand-held SPAD 502 meter (Minolta, Osaka, Japan) was used 

due to difficulties accessing laboratory equipment. Twenty apical leaves 

were sampled and put in a plastic bag then kept cool in an ice box and 

then the chlorophyll concentration was measured in the laboratory.  

Spectral data analysis 

Following the measurements of reflectance by ASD FieldSpec Pro 

spectroradiometer, the data was downloaded to a PC and pre-processed 
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with an ASD software. The in situ hyperspectral and laboratory darkroom 

spectral data were interpolated to a final spectral resolution of 0.5 nm 

then truncated between 300 and 1000 nm. Finally the reflectance was 

smoothed to further reduce the noise at the start and the end of the 

magnetic spectrum by passing a 5 nm running mean filter over the whole 

spectrum.  

Remote sensing data acquisition and analysis 

The 7
th

 April QuickBird multispectral image was acquired covering 

wheat crops of the 2006-07 growing season. QuickBird satellite is a high 

spatial resolution satellite comprises four multi spectral bands (blue, 

green, red and near-infrared) of 2.4 m spatial resolution. The QuickBird 

image of wheat fields was acquired at 09:06 h GMT on 7
th

 April 2007 for 

the study area. The image was geo-corrected using image to image 

technique by infoterra (the image supplier). The image was 

atmospherically corrected using the dark pixel method (Tyler et al., 

2006). The image was also classified using both unsupervised 

classification (k-means) and supervised classification (MLC) to identify 

different crops in each image.      

Calculating spectral vegetation indices 

To achieve the objectives of this research twelve commonly used broad 

band vegetation indices (Table 1) were derived from both in situ 

hyperspectral and satellite imagery to assess the ability of remotely 

sensed data to detect stress in wheat.  

Table 1 formulae of different vegetation indices and references collected from the 

literature  

Notation Formulae Reference 

NDVI (NIR-Red)/(NIR+Red) Rouse et al., 1974 

RVI NIR/Red Pearson &Miller, 1972 

SAVI [(NIR-Red)/(NIR+Red+L)]*(1+L) Huete, 1988 

GNDVIbr (NIR-green)/ (NIR+green) Yang et al., 2006a 

DVI NIR-Red Tucker, 1979 

SR NIR/Red Aparicio et al., 2002 

SLAVI NIR/(Red+NIR) Lymburner et al., 2000 

OSAVI [(NIR-Red)/(NIR+Red+L)]*(1+L), L = 

0.16 

Rondeaux et al., 1996 

VI1 NIR/(green-1) Vina, 2003 

RDVI DVINDVI Reujean & Breon, 1995 

SI Red/NIR Jiang et al., 2003 

IPVI NIR/(NIR+Red) Crippen, 1990 
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NDVI, Normalized Difference Vegetation Index; RVI, Ratio Vegetation Index; SAVI, 

Soil Adjusted Vegetation Index; GNDVI, Green Normalized Difference Vegetation 

Index; DVI, Difference Vegetation Index; SR, Simple Ratio; SLAVI, Specific Leaf 

Area Vegetation Index; OSAVI, Optimized Soil Adjusted Vegetation Index; VI1, 

Vegetation Index One; RDVI, Renormalized Difference Vegetation Index; SI, Stress 

Index; IPVI, Infra-Red Percentage Vegetation Index  

Statistical analysis 

Data were checked for normality using Anderson-Darling method with 

95% significance level. The Pearson Product Moment correlation 

coefficient was used to test the association between different vegetation 

indices and crop properties and to identify optimum vegetation indices. 

Simple linear and multiple regression analyses were used to derive 

regression equations to the retrieval of grain yield under moisture and 

salinity stressors.      

RESULTS AND DISCUSSIONS  

Identifying different crops in the study area 

K-means unsupervised and Maximum Likelihood (MLC) supervised 

algorithms were used to identify different crops within the study area. 

Both algorithms were performed on QuickBird image using ENVI v4.4. 

Figure 1 shows different classes of crops using MLC and it is noticeable 

that the spectral signature from wheat fields is different from clover, bare 

soil and water. To evaluate the classification methods, a confusion matrix 

was derived for both k-means and MLC of the QuickBird image. In 

supervised algorithm, a validation dataset, which was independent from 

the training dataset, was created manually. The validation dataset 

composed at least 1000 pixels for each class.The classification produced 

two distinct crops (wheat and clover) and two more classes (water 

surfaces and bare soil). The results of the confusion matrix showed that 

the overall accuracy of the k-means classification was slightly high of 

77.4 % even with poor classification for specific targets. The 

classification accuracy varied for identifying different classes ranging 

from 42.24% (for bare soil) to 97.60% (for wheat crops). The 

classification accuracy for clover and water are 94.36 and 72.45% 

respectively (Table 2). The slightly low classification accuracy for water 

may be a result of the spectral confusion between water and shadows. 
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The low classification accuracy for identifying bare soil may be a result 

of spectral confusion between dry soils and wet soils. However, the k-

means produced high classification accuracy it might produce too many 

misclassified pixels. For example the > 0.95 accuracy for identifying 

wheat crops may lead to high percentage of misclassified pixels. 

 

Figure 1 MLC of QuickBird image acquired on 7
th

 April 2007 for 

different crops in south-west Alexandria, Egypt. 

The confusion matrix derived for MLC (Table 3) showed that the overall 

classification accuracy is high (91.77%) associated with high kappa 

coefficient (0.89). The classification accuracy for different classes is also 

high, ranging from 85.95% (for classifying clover) to 97.79% (for 

classifying water).  

Detecting stress in wheat  

Different broad band vegetation indices derived from both in situ 

hyperspectral and satellite imagery data established strong relationships 

with different biochemical and biophysical properties including 

chlorophyll concentration, biomass and LAI (Table 4). 
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Table 2 Confusion matrix results for k-means algorithm of wheat and 

other crops in south-west Alexandria, Egypt. 

Class Ground truth (Percent) User’s 

Accuracy Whea

t 

water Bare 

soil 

Clover total 

Unclassified 0.00 0.00 0.00 0.00 0.00 (%) 

Wheat  97.60 25.82 12.65 4.17 35.09 69.90 

Water 2.02 72.45 45.1 0.28 29.43 61.74 

Bare soil 0.38 0.29 42.24 0.93 10.42 96.06 

Clover  0.00 1.45 0.00 94.63 25.06 98.55 

total 100.00 100.00 100.00 100.00 100.00  

Producer’s 

Accuracy (%) 
97.60 72.45 42.24 94.63 

  

Kappa 

Coefficient 
6980. 

    
 

Overall 

Accuracy 
0.774 

    
 

Table 3 Confusion matrix results for MLC algorithm of wheat and other 

crops in south-west Alexandria, Egypt. 

Class Ground truth (Percent) User’s 

Accuracy Wheat Clover  Bare 

soil 

Water  Total 

Unclassified 0 0 0 0 0.00 (%) 

Wheat  24.09 1.28 2.04 0.00 22.75 96.29 

Clover 4.26 95.58 3.99 0.09 22.63 90.67 

Bare soil 5.32 11.10 92.46 2.12 28.92 84.51 

Water  0.00 1.67 1.51 97.79 25.70 96.9 

Total 100 100 100 100 100.00  

Producer’s 

Accuracy (%) 
90.42 85.95 92.46 97.79 

  

Kappa 

Coefficient 
9080. 

    
 

Overall 

Accuracy (%) 
91.77 
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The results at the three sites demonstrated that vegetation indices 

successfully showed the potential of predicting biophysical and 

biochemical properties of wheat. OSAVI derived from in situ data 

produced the strongest correlation with the measured chlorophyll whilst 

RVI and SR derived from satellite imagery produced the strongest 

correlation with the measured chlorophyll (r = 0.667). RDVI produced 

the strongest correlation with biomass and LAI (r = 0.92). the results 

therefore revealed that QuickBird satellite imagery successfully mapped 

the spatial variability of aboveground biomass, chlorophyll, LAI and 

plant height which are closely linked to crop grain yield. These results 

are in agreement with those obtained by  Yang et al., 2006b.  Grain yield 

can therefore be predicted using this type of satellite imagery. Successful 

mapping of agricultural grain crops at early stages will provide a useful 

tool to detect areas suffering from stress and therefore enable remediation 

to be implemented to increase yield. Avoiding and managing crop stress 

in the Nile Valley and Delta may increase crop productivity, which is 

crucial to a country like Egypt to sustain the rapid population growth. 

The combined dataset collected from different sites was also used to 

assess the relationship between different vegetation indices derived from 

in situ hyperspectral data and those derived from satellite data. Figure 2 

shows that there is a strong linear relation between RVI derived from in 

situ and RVI derived from satellite data (R = 0.75; p = 0.000). The results 

further showed a decrease in the relationship between the calculated 

indices from both platforms, which may be attributed to (1) the time 

difference between collecting in situ data and satellite image acquisition 

(2) the in situ hyperspectral survey was restricted between 11 am and 3 

pm whilst satellite image acquired mid morning and therefore different 

solar angles and (3) in situ data collected at nadir position whilst satellite 

data acquired at off nadir. The results further demonstrated that 

QuickBird has low spectral capabilities and subsequently it is not 

dependable to be used for distinguishing moisture and salinity stress. in 

this context hyperspectral infrared imager (HyspIRI; 2013-2016) would 

be effective satellite imagery in detecting stress and distinguishing source 

of stress at a regional scale since it provides images at 400-2500 nm with 

45 m spatial resolution. Using this imager with the new advances in 
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detectors, optics and electronics could acquire images with 210 spectral 

bands and thus calculating both broad band and hyperspectral vegetation 

indices.   

Table 4. Coefficient of correlation between different broad band vegetation 

indices derived from both in situ hyperspectral and QuickBird satellite data and 

wheat properties collected in March 2007in south-west Alexandria, Egypt 

Index 

Chlorophyll Biomass Height LAI 

In situ  Satell

ite 

In 

situ  

Satelli

te 

In 

situ  

Satellit

e 

In situ  Satell

ite 

NDVI 0.76 0.627 0.82 0.905 0.85 0.885 0.72 0.894 

RVI 0.78 0.669 0.82 0.839 0.85 0.811 0.74 0.884 

SAVI 0.79 270.6 0.78 050.9 0.69 850.8 0.51 40.89 

GNDVIbr 0.79 270.6 0.82 40.88 0.87 360.8 0.76 40.88 

DVI 0.73 0.498 0.63 0.919 0.53 0.856 0.38 0.916 

SR 0.78 0.669 0.82 0.839 0.85 0.811 0.74 0.884 

SLAVI 0.76 0.627 0.82 0.904 0.85 0.885 0.72 0.894 

OSAVI 0.80 0.627 0.83 0.904 0.78 0.885 0.61 0.894 

VI1 0.30- 0.666 -0.11 0.829 0.02 0.797 0.12 0.878 

RDVI 0.77 0.544 0.82 0.927 0.85 0.873 0.74 0.919 

SI 0.75- 0.619- 0.82- 0.908- 0.84- 0.889- 0.72- 0.88- 

IPVI 0.76 0.627 0.82 0.905 0.85 0.885 0.72 0.894 

SUMARY AND CONCLUSION 

The results of this research showed that using high spatial resolution 

satellite remote sensing such as QuickBird can give a better 

understanding about stress at a local scale. Due to limited spectral 

resolution of QuickBird satellite images, it is difficult to distinguish  

different sources of stress. However, this may be resolved in the nearest 

future with the launch of new satellite systems (HyspIRI, 2013-2016) 

with high spectral resolution and low revisit cycles. The results also 

established the possibility for mapping different crops within the study 

area. Moreover, The results demonstrated the high efficiency of both in 

situ hyperspectral and high spatial resolution remote sensing imagery to 

predict wheat properties such as LAI, biomass, plant height and 

chlorophyll concentration. 
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Figure 2 the relationship between NDVI derived from in situ hyperspectral survey and 

NDVI derived from QuickBird image collected from wheat fields in south-west 

Alexandria, Egypt. 

Using this technique in the Nile Valley and Delta will maximise the 

efficiency of water use and decrease input costs (pesticides, fungicides, 

fertilizers, seeds and irrigation). Remote sensing can therefore be used as 

a useful, quick and cost-effective tool in precision farming and regional 

analysis giving timely information about crops in specific areas.  
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 الملخص العربى

استخدام قياسات الانعكاس وصور الاقمار الصناعية عالية الدقة الايضاحية فى 

 التنبؤ بالاجهاد على محصول القمح بمصر

* اسعد دربالة** طارق فودة***المتولىعادل   

 2007/ 2006خحلل الموسحا الوح و   8أجريت هذه الدراسة على محصول القمح  نح س سح   

ارعححة ج م ححة سحح رل  م ب لمملتححة الم حححدس باححدن ةراسححة امت   ححة اسحح  دا  ب لصححوا الاج ج ححة  بم

ب    ت الاس و  ر عن ب د سواء الارض ة م ا  أو نحور الاممح ر الصح  ع ة لل  بحلا ب لاجاح ة علحى  

ال لمحة بح ن ال حوال العب   حة  محصول القم  ولقد تمت الدراسة على مرحل  ن: الاولى ةراسة 

والمرحلحة    والملاموحرات ال رحرية المحبحوبة محن ب   ح ت الا  تح   والتم  ئ ة لمحصحول القمح

الث   ة ت م ا ال   ئم الم حصل عل ا  من تج را الصوا على  ع ق كب ر ب س  دا  نور الامم ر 

خححلل  بمصححر الصحح  ع ة ع ل ححة الدمححة الايرحح ح ةم ولقححد تححا عمححل ميحح رات حقل ححة لم عقححة الدراسححة

ب    ت الاس و  ر عن ب د على المب و  الارضى وع   ت ل جم ع  2007شار  م ر  وابريل 

تربححة وع  حح ت مححن م حح ه الححر  مححن م حح ضا الدراسححة ب لاضحح تة الححى ع  حح ت ال بحح ت ل قححدير خححوال 

 واظارت الدراسة ال   ئم ال  ل ة: ال ب ت الم  لفة

ر الصحح  ع ة ع ل ححة الدمححة الايرحح ح ة يمتححن اسحح  داما  ب جحح ا لل  بححلا ب لاجاحح ة علححى نححور الاممحح 

 RDVI ي  بحر الامثحل تحى ال  بحلا بتحل محن الت لحة ال رحرية وةل حل مبح حة سحع  الاوراق ال بح ت

على ال رت ب ي  بر الامثل تى ال  بلا ب رك ا التلوروت ل ح ث ك ن  0.93،  0.92 بم  مل ارتب ض

   RVI   0.67ب  ام   م  مل الارتب ض

أظارت ال   ئم أير  علمة ارتب ض موية ب ن الحدلائل ال رحرية المحبحوبة محن م  سح ت الا  تح   

 0.75تى الحقل وتلك المحبوبة من نورس القمحر الصح  عى ح حث ك  حت م محة م  محل الارتبح ض  

 RVIللدل ل 

ع ل حة الدمحة الايرح ح ة  ومن خحلل   ح ئم هحذا البححث  جحد أن اسح  دا  نحور الاممح ر الصح  ع ة

س بحح عد تححى اسحح  دا  المححوارة الم  حححة بتفحح ءس ع ل ححة وب ل حح لى م صمححة ا   ج ححة المحصححول و لححك 

 ب ل  بلا ب لاجا ة على ال ب ت ع د مراحل  مو مبترس وات    القرار الم  سب ل ج بهم   

 *مدرس الهندسة الزراعية كلية الزراعة جامعة طنطا 

 الزراعية كلية الزراعة جامعة طنطا **استاذ مساعد الهندسة

 استاذ الهندسة الزراعية كلية الزراعة جامعة طنطا*** 


