PREDICT TRACTOR DRAWBAR FORCE FOR PRIMARY TILLAGE IMPLEMENTS

Mohamed A.A.I1 A. F. Bahnasy2 M E. M. Morsi3

ABSTRACT

The effect of soil moisture content and tire inflation pressure on tractor performance was determined when linked to moldboard and chisel ploughs as primary tillage implements. The factors considered were fuel consumption, tire inflation pressure, tillage width, tillage depth, dynamic load and speed of operation and cone index of soil. By conducting the experiments in the field, relations were developed between different independent variables and one dependent variable i.e. drawbar pull for moldboard and chisel ploughs. A model for predicting drawbar pull for chisel and moldboard ploughs was developed and tested.

INTRODUCTION

The amount of energy consumed during a tillage operation depends on three categories of parameters soil parameters, tool parameters and operating parameters. Although many research have been reported the effects of those parameters on tillage energy, the exact number of affecting parameters and the contribution of each parameter in total energy requirement have not been specified.

Chi and Kushwaha (1991) have described a three-dimensional Finite Element Model for simulating soil-tool interaction. The model includes both effects of soil strength and friction between soil and tool surface. They have studied the friction behavior between the soil and cutting blade and they developed a thin layer interface element.

Tillage tools and implements are used to produce those favourable soil conditions. One of the criteria used to assess the suitability of a tool for soil manipulation is the force required in pulling the tool through the soil (Gill and Vanden Berg, 1967). The effects of draught on the performance of different tillage tools and implements in different countries have been investigated (Oni et al., 1992; Shirin et al., 1993; Fielke, 1996; McKyes and 1998; Manian et al., 2000; Shrestha et al., 2001; Gratton et al., 2003;)

1Head of Researcher, Agr. Eng. Res. Institute
2Senior Researcher, Agr. Eng. Res. Institute
3Researcher, Agr. Eng. Res. Institute

The 17th. Annual Conference of the Misr Society of Ag. Eng., 28 October, 2010 - 1072 -
McLaughlin and Campbell, 2004). All these researchers observed that draught varies with variations in soil conditions, tool design and operational parameters.

Aluko and D.A. Seig (2000) have described an experimental investigation of the failure characteristics, and conditions for brittle fracture in two-dimensional soil cutting. Most of the force prediction models developed on the basis of the classical soil mechanics theories are deficient in regard to their applications for agricultural engineering purposes, particularly because consideration is given to brittle failure only. Also, the speed effects are generally neglected. Major variations in force response to tool travel velocity have been reported by several researchers under a wide range of soil moisture contents in different soil types and for different tillage tools.

El-Banna et al (1994) concluded that increasing weight on the disk provides a means of making major change in the depth to which disks penetrate the soil. Increasing depth of harrowing due to increasing vertical load on disks required more draught, especially in primary tillage operation in heavy soil. The most important factors affected harrow draught were, disk load and its attached angle on harrow gang.

Mohammed et al. (2000) found that the dynamic weight transfer is affected by tillage depth and rear wheel slip. Weight transfer increased when tillage depth and rear wheel slip increased.

Zein El-Din and Sayedahmed (2000) developed mathematical model based on limit equilibrium analysis to predict the behavior of passive tillage tools: flat, chisel, sweep and winged chisel. They found that adding two wide wings to chisel tool increased the tool width from 7 cm to 35 cm, resulting in an increase in the draft force of approximately three times at tillage depth 15 cm, but the unit draft decreased by 18.1%.

Kazimieras and Algirdas (2005) concluded that the used of excessive ballast mass is useless particularly when working at high speed or on swampy soils (carrying one ton of ballast mass on soil prepared for sowing at the speed of 8 km/h tractor uses about 0.6 l/h.

Bukhari et. al (1988)) reported that the coefficient of traction is used for evaluation of the tractor tractive performance as effected by soil type and physical condition, moisture content and soil distribution pressure. The coefficient of traction is relatively higher in hard soil than sandy soil.
Mohamed and Clough (1989) concluded that to improve the tractive performance of a tractor is to reduce power losses at soil-wheel interaction. Baloch et al (1991) concluded that the tractor tractive performance may be evaluated by means of a pull-slip test. The tractor must ensure to be efficiently utilized through implement draught. Bailey et al. (1991) concluded that tractor tyre inflation pressure affected stresses in soil beneath the tyre in sandy loam soil while the same could not be concluded in clay loam soil. Wiley et al. (1992) showed that inflation pressure and dynamic load are important factors that affect the performance of tractor tyres.

Al-Hamed et al (2001) studied the effect of rear tire inflation pressure (on the front wheel assist tractor performance in sandy loam soil. They found that the lower rear tire inflation pressure the better tractive performance. El-Ashry et al (2003) carried out field experiments to evaluate the tractive performance at different levels of inflation pressure (75, 100 and 125 kPa) and ballasting conditions (0, 60 and 90 kg) in ploughed and unploughed soils. They concluded that the tractive efficiency decreased as the inflation pressure is increased from 75 to125 kPa in the tilled and untilled soils. Also, they concluded the tractive efficiency increased up to a certain value of ballast conditions (from 0 kg to 60 kg) beyond which it decreased with an increase in ballast conditions (from 60 kg to 90 kg) in tilled and untilled soil conditions.

The objectives of the present study are:
1- Measure the draught requirements of two tillage tines under varying conditions of soil moisture content and penetration resistance (cone index) and develop a model to predict drawbar pull for chisel and moldboard plows.
2- Measure and evaluate soil disturbance parameters that arose from the experiments.

MATERIALS AND METHODS
The experimental work was carried at Etab El-Baroud Agricultural Research Station, Behaira Governorate Egypt in 2007. An area of about 3.1 fed. was selected for the experiment and the soil was classified as clay loam. The experimental area was divided into three main blocks (90 x 48 m), one was left dry (M.C. 7.9%) while the others were given light irrigation to
maintain the required moisture content (14.8% and 21.75%). Each block was divided into three sub-blocks (90 x 16 m) representing the replicates. Each sub-block was divided into four plots giving a total of 54 plots. A factorial design was used and the treatments were randomly distributed within each replicate.

Tractors:
Two tractors were used in the experiment, namely, Naser tractor 65 (48.75 kW) hp made in Egypt and Ford 7610 (76 hp- 59.7 kW) made in U.S.A. The specifications of the used tractors are given in Table 1.

Table (1): Specifications of used tractors

<table>
<thead>
<tr>
<th>Tractor</th>
<th>Ford</th>
<th>Nasr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>59.7 kW</td>
<td>48.75 kW</td>
</tr>
<tr>
<td>Tractor type</td>
<td>Two wheel drive</td>
<td>Two wheel drive</td>
</tr>
<tr>
<td>Weight</td>
<td>30.93 kN</td>
<td>30 kN</td>
</tr>
<tr>
<td>Axel load</td>
<td>rear: 21 kN</td>
<td>rear: 18.96 kN</td>
</tr>
<tr>
<td></td>
<td>front: 9.93 kN</td>
<td>front: 11.04 kN</td>
</tr>
<tr>
<td>Tire size</td>
<td>rear: 18.4-30</td>
<td>rear: 14-30</td>
</tr>
<tr>
<td></td>
<td>front: 12.4-24</td>
<td>front: 5.6-20</td>
</tr>
<tr>
<td>Wheel base</td>
<td>2.3 m.</td>
<td>2.05 m.</td>
</tr>
</tbody>
</table>

Tillage implements:
Two primary tillage implements were used in the experiment, namely chisel plough and moldboard plough.

1- **Chisel plough (RAU)**
A seven blades mounted chisel plough, RAU, was used in this experiment. It was manufactured by Behera Company, Alex. and composed of three rows at 50 cm spacing between rows. The blades distribution on rows is 2, 2 and 3 from front to rear at 50 cm spacing between each two blades on the same row and 25 cm spacing between each two staggered blades. The plough weight is about 400 kg and the ploughing width is 175 cm.

2 - **Moldboard plough:**
A three blades mounted moldboard plough was used in this experiment. It was manufactured by Behera Company, Alex. The plough weight is about 600 kg and the ploughing width is 105 cm.
Parameters Measurements:
1 - Soil moisture content
soil moisture content was measured by taking samples from three depths 0-10 cm, 10-20 cm and 20-30 cm at four different locations randomly selected in each of the two blocks. The moisture content was calculated using the oven method.
The soil moisture content of the area at three depths are given Table (2).
Table(2): Soil moisture content, %

<table>
<thead>
<tr>
<th>Replications</th>
<th>Depth of soil sample, cm</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-10</td>
<td>10-20</td>
</tr>
<tr>
<td>Soil moisture content (7.9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.22</td>
<td>8.18</td>
</tr>
<tr>
<td>2</td>
<td>5.18</td>
<td>7.95</td>
</tr>
<tr>
<td>3</td>
<td>5.28</td>
<td>8.21</td>
</tr>
<tr>
<td>4</td>
<td>5.24</td>
<td>8.31</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil moisture content (14.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12.9</td>
<td>14.5</td>
</tr>
<tr>
<td>2</td>
<td>11.9</td>
<td>14.7</td>
</tr>
<tr>
<td>3</td>
<td>13.5</td>
<td>14.2</td>
</tr>
<tr>
<td>4</td>
<td>13.2</td>
<td>14.6</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil moisture content (21.75%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>16.68</td>
<td>20.34</td>
</tr>
<tr>
<td>2</td>
<td>16.72</td>
<td>20.40</td>
</tr>
<tr>
<td>3</td>
<td>16.60</td>
<td>20.44</td>
</tr>
<tr>
<td>4</td>
<td>16.84</td>
<td>20.38</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 - The tractive force:
The tractive force of the tractor was measured by using a hydraulic
dynamometer (5000 kg) and two tractors. One of the two tractors was towed by the other. The rear (towed) tractor (Naser) is used as an implement carrier whereas the front one (Ford) is, thus, used as a prime mover. A horizontal chain with the hydraulic dynamometer linked the two tractors. The rear tractor which pulled the implement is being in neutral gear but with implement in the operating position. The tractive force was recorded in the measure distance of 40 m as well as the time taken to traverse it. On the same field the implement was lifted out of the ground and the rear tractor was pulled to record the rolling resistance (R), then the drawbar pull (P) was calculated as follow:

Drawbar bull, kN = Tractive force, kN - Rolling resistance, kN

3 - The tractive power:
The tractive power was calculated by the following equation:

\[
\text{Tractive power, kW} = \text{tractive force, kN} \times \text{speed, km/h}
\]

4 - Wheel slip:
The wheel slip was computed from the following equation:

\[
S = 1 - \frac{V_a}{V_t}
\]

Where, \(s \) = wheel slip
\(V_t \) = Velocity, theoretical
\(V_a \) = Velocity, actual.

5 - Ttractive efficiency:
Ttractive efficiency is defined as:

\[
\text{TE} = \frac{\text{Output power}}{\text{Input power}} = \frac{\text{Axle Power}}{\text{NT} \times V_a} = \frac{\text{NT} / \text{Wd} \times V_a}{\text{GT} / \text{VT} \times \text{Va}} = \frac{\text{NT} / \text{Wd} \times V_a}{\text{GT} / \text{VT} \times V_t} = \frac{\text{Nettr} (\text{drawbar pull})}{\text{Dynamic Reaction force}} = \frac{\text{GT}}{\text{Wd}} = \frac{T}{\text{rt} \times \text{Wd}}
\]

Where:

\[
\text{NTR} = \text{Net traction ratio} = \frac{\text{Net traction (drawbar pull)}}{\text{Dynamic Reaction force}} = \frac{\text{NT}}{\text{Wd}}
\]

\[
\text{GTR} = \text{Gross traction ratio} = \frac{\text{Gross traction}}{\text{Dynamic Reaction force}} = \frac{\text{GT}}{\text{Wd}} = \frac{T}{\text{rt} \times \text{Wd}}
\]
Gross traction = Net traction + rolling resistance.

6 - The coefficient of traction
The coefficient of traction was computed from the following relation (Dwyer and Pearson, 1976):

\[
\text{Coeff. of traction} = \frac{\text{drawbar pull, kN}}{\text{dynamic load on the rear wheels, kN}}
\]

7 - Dynamic load on the rear wheels:
The usual way is to calculate dynamic ratio based upon the angle and location of the line of draft. The resultant of forces on the drive wheel itself is usually considered to be at a point directly under the axle and at the soil surface when making the calculation though this is not necessarily true. Summation of vertical and horizontal forces and moments results in the following expression for the dynamic rear weight of the tractor Zoz (1970):

\[
R_{\text{WD}} = R_{\text{WS}} + P \left[\frac{H}{WB} + \left(1 + \frac{B}{WB} \right) \tan \theta \right]
\]

For horizontal pull \(\theta = 0 \) then

\[
R_{\text{WD}} = R_{\text{WS}} + P \left[\frac{H}{W_B} \right]
\]

Where:

- \(H \) = Drawbar height, m
- \(P \) = Horizontal pull, kN
- \(R_W \) = Rear weight, static, kN
- \(W_B \) = Draft angle below horizontal.
- \(\theta \)

8. Tire inflation pressure
Three levels of tire inflation pressure vise 80, 100 and 120 kPa were selected for all test conditions.

Model development
Dimension analysis is used to develop the prediction model for drawbar pull requirement for different primary tillage implements. Based on the Buckingham Pi theorem (Kasprzak et al 1990). The number of dimensionless and independent quantities (namely Pi terms) required to express a relationship among the variables in any physical system can be
determined as follows:

\[S = n - b \]

Where \((S)\) is the number of Pi terms, \((n)\) is the total number of variables, and \((b)\) is the number of basic dimensions. Basic dimensions are mass \((M)\), Length \((L)\) and time \((T)\). Eleven Pi term are needed since there are twelve variables and three basic dimensions in the system of the tractor moving on the soil. The basic dimensions of each variable are presented in Table (3).

The drawbar pull required to pull the implement can be expressed as a function of other twelve variables:

\[P = f(FC, \delta, Z, W, Pi, V, B, D, H, CI, \gamma) \]

To determine Pi terms, the following equation is established:

\[\Pi_i = P.x_1 \times Pi.x_2 \times B.x_3 \times D.x_4 \times H.x_5 \times Z.x_6 \times \delta.x_7 \times W.x_8 \times Fc.x_9 \times \gamma.x_{10} \times CI.x_{11} \times V.x_{12} \]

Where \(X_1 \ldots X_{13}\) unknowns.

Because Pi terms should not have dimension, the dimensional equation corresponding to equation 4 can be written as follows:

\[M^0L^0T^0=(MLT^{-2})x_1.(ML^{-1}T^{-2})x_2.Lx_3.Lx_4.Lx_5.Lx_6.Lx_7.(MLT^{-2}) \times_8.(L^3T^{-1})x_9.(ML^{-2}T^2)x_{10}.(ML^{-1}T^{-2}) \times_{11}.(L.T^{-1}) \times_{12}.L \times_{13} \]

Table (3) variable impact tractor pull.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Variable</th>
<th>Dimension</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Drawbar pull</td>
<td>MLT^{-2}</td>
<td>kN</td>
</tr>
<tr>
<td>FC</td>
<td>Fuel consumption</td>
<td>L^3T^{-1}</td>
<td>l^3.S^{-1}</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Tire deflection</td>
<td>L</td>
<td>m</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Tillage width</td>
<td>L</td>
<td>m</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Tillage depth</td>
<td>L</td>
<td>m</td>
</tr>
<tr>
<td>Z</td>
<td>Vertical wheel load</td>
<td>MLT^{-2}</td>
<td>kN</td>
</tr>
<tr>
<td>W</td>
<td>Tire inflation</td>
<td>ML^{-1}T^{-2}</td>
<td>kN.m^{-2}</td>
</tr>
<tr>
<td>Pi</td>
<td>pressure</td>
<td>L.T^{-1}</td>
<td>m.s^{-1}</td>
</tr>
<tr>
<td>V</td>
<td>Travel speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Tire properties</td>
<td>L</td>
<td>m</td>
</tr>
<tr>
<td>D</td>
<td>Tire diameter</td>
<td>L</td>
<td>m</td>
</tr>
</tbody>
</table>
For \(M: \) \(X_2 + X_6 + X_{12} = 0 \)

For \(L: \) \(X_1 + X_2 + X_3 + X_4 + X_5 + X_7 + X_8 + 3X_9 - 2X_{10} - X_{11} + X_{12} + X_{13} = 0 \)

For \(T: \) \(-2x_1 - 2x_2 - 2x_8 - x_9 - 2x_{10} - 2x_{11} - x_{12} = 0 \)

Because three equations are available for solving the thirteen unknowns, three unknowns \((X_2, X_6, \text{ and } X_{12}) \) are kept and one of the remaining unknowns is equal 1 while the others are equal to 0 to find out each \(P_i \) term. The determinant of coefficients of these variables kept should not be equal to zero to ensure that resulting \(P_i \) terms are independent (Langhaar 1951 and Murphy 1950). \((X_2, X_6 \text{ and } X_{12}) \) are considered of this rule as shown below:

\[
\begin{vmatrix}
X_2 & X_6 & X_{12} \\
1 & 0 & 0 \\
-1 & 1 & 1 \\
-2 & 0 & -1 \\
\end{vmatrix} = -1
\]

The calculation of \(P_i \) terms are found to be as follows:

\[
\begin{align*}
P_1 &= \frac{P}{P_i Z^2} \\
P_2 &= \frac{B}{Z} \\
P_3 &= \frac{D}{Z} \\
P_4 &= \frac{H}{Z} \\
P_5 &= \frac{d}{Z} \\
P_6 &= \frac{W}{P_i Z^2} \\
P_7 &= \frac{F_c}{V Z^2} \\
P_8 &= \frac{\gamma Z}{P_i} \\
P_9 &= \frac{C_i}{P_i} \\
P_{10} &= \frac{\delta}{Z}
\end{align*}
\]

The soil moisture content is stand alone as \(P_i \) term because of it dimensionless variable and it is the eleventh one. A new set of \(P_i \) terms can be generated by changing \(X_2, X_6 \text{ and } X_8 \) partially and totally with other unknowns by guaranteeing that the determinant of their coefficients are not equal to zero. In other way, new \(P_i \) terms can be generated by multiplying and/or dividing present \(P_i \) terms with each other. In addition, a present \(P_i \) term can be reversed to make a new \(P_i \) term. But, the independency condition of \(P_i \) terms requires that any selected ten \(P_i \) terms can not be generated from each other. Thus, if a new \(P_i \) term is selected for modeling,
one of the present Pi terms involving in its calculation should be omitted. Some of Pi terms are transformed as shown in Table 4 to make them easy to work with.

Table 4 transformation among Pi terms:

<table>
<thead>
<tr>
<th>Old Pi</th>
<th>Transformation</th>
<th>New Pi</th>
<th>Old Pi</th>
<th>Transformation</th>
<th>New Pi</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Pi_1)</td>
<td>(\frac{P_1}{P_1 \Pi_7^2})</td>
<td>(\Pi_1 = \frac{P}{W})</td>
<td>(\Pi_6 = \frac{W}{P_1 \times Z^2})</td>
<td>(\Pi_9)</td>
<td>(\Pi_6 = \frac{W}{Z^2 \times C_1})</td>
</tr>
<tr>
<td>(\Pi_2)</td>
<td>(\frac{B}{Z})</td>
<td>(\Pi_2 = \frac{B}{Z})</td>
<td>(\Pi_7 = \frac{F_c}{V \times Z^2})</td>
<td>(\Pi_7)</td>
<td>(\Pi_2 = \frac{F_c}{V \times Z^2})</td>
</tr>
<tr>
<td>(\Pi_3)</td>
<td>(\frac{D \Pi_2}{Z \Pi_3})</td>
<td>(\Pi_3 = \frac{B}{D})</td>
<td>(\Pi_8 = \frac{g \times Z}{P_i})</td>
<td>(\Pi_8)</td>
<td>(\Pi_8 = \frac{g \times Z^2}{P_i \times d})</td>
</tr>
<tr>
<td>(\Pi_4)</td>
<td>(\frac{H \Pi_4}{Z \Pi_5})</td>
<td>(\Pi_4 = \frac{H}{d})</td>
<td>(\Pi_9 = \frac{C_i}{P_i})</td>
<td>(\Pi_9)</td>
<td>(\Pi_2 = \frac{C_i}{g \times Z})</td>
</tr>
<tr>
<td>(\Pi_5)</td>
<td>(\frac{d \Pi_{10}}{Z \Pi_5})</td>
<td>(\Pi_5 = \frac{\delta}{d})</td>
<td>(\Pi_{10} = \frac{\delta}{Z})</td>
<td>(\Pi_{10})</td>
<td>(\Pi_{10} = \frac{\delta}{Z})</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSIONS

The effect of moisture content and implement type (Moldboard and chisel plow) on tire efficiency are shown in Figure (1and2). The highest tire efficiency was at the lowest soil moisture content of 7.8% and tire inflation of 80 kPa for both plows, the lowest value of tire inflation pressure is the highest moisture content and high tire inflation pressure of 120 kPa. Increasing soil moisture content from 7.9% to 21.7 % decreased the tire efficiency by 7.5 and 10% for chisel and moldboard plough respectively. Tire efficiency of moldboard plough as compared to the chisel plough was 31% and 37.9 % in the dry soil for the lowest and highest tire inflation pressure, while in the highly moistened soil, the increase was 63.5% and 4.94% for both tire inflation pressures.

The relationship between the travel speed and wheel slippage for the different treatments is given in Figs. (3and 4).
Fig 1: Effect of soil moisture content and travel reduction on tire efficiency for moldboard plow.

Fig. 2: Effect of soil moisture content and travel reduction on tire efficiency for chisel plow
Fig.(3): Relationship between tractor travel reduction and net traction ratio for chisel plow.

Fig.(4): Relationship between tractor travel reduction and net traction ratio for moldboard model plow.
The final model relating all the independent factors with drawbar pull are given as follow:

\[P = \left[\beta_1 \times \frac{y \times Z^2}{P_i \times d} + \beta_2 \times \frac{F_c}{Z^2 \times V} - \beta_3 \times \left(\frac{W}{Z^2 \times C_I} \right) + \beta_4 \left(\frac{d}{\delta} \right) + \beta_5 \right] * W \]

Where:

<table>
<thead>
<tr>
<th>constant</th>
<th>Chisel plow</th>
<th>Moldboard plow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_1)</td>
<td>55.198</td>
<td>28.61</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>674.1</td>
<td>-1455.7</td>
</tr>
<tr>
<td>(\beta_3)</td>
<td>0.004764</td>
<td>0.005071</td>
</tr>
<tr>
<td>(\beta_4)</td>
<td>-0.02236</td>
<td>-0.01978</td>
</tr>
<tr>
<td>(\beta_5)</td>
<td>0.52973</td>
<td>0.946452</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.95</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Model verification:
To verify the model output, the predicted values were correlated to the measured values. A linear regression model of \(Y = A + BX \) was developed with the predicted drawbar pull as the dependent variable \(Y \) and the observed drawbar pull as the independent variable \(X \). If the regression model was a perfect predictor of the drawbar pull, the linear regression constants \(A \) and \(B \) would equal 0 and 1, respectively. Gregory and Fedler (1986) stated that values or \(R^2 \) (coefficient of determination) varies between 0 and 1 and provide an index of goodness of model fit. If \(R^2 \) value is 0.90 or larger, then at least 90% of the variability is explained. This would generally be considered an excellent fit. On the other hand, an \(R^2 \) value of 0.80 is considered a good fit. An \(R^2 \) value as low as 0.60 is sometimes considered acceptable or even good. The evaluation of linear model of different shapes is based on values of \(A \), \(B \), \(R^2 \), \(R \) and the standard error of estimation \((\lambda) \) which is defined below as:
FARM MACHINERY AND POWER

\[\lambda = \sqrt{\frac{\sum \limits_{i=1}^{n} (D_{\text{Mes.}} - D_{\text{Pre.}})^2}{n}} \]

Where:
- \(D_{\text{Mes.}} \) = measured drawbar pull, kN.
- \(D_{\text{Pre.}} \) = predicted drawbar pull, kN, mm.
- \(\lambda \) = standard error of estimation
- \(n \) = number of observations.

The \(R^2 \) and \(\lambda \) (standard error of estimate linear model) indicate the scatter points about the regression equation. \(R \) (correlation coefficient) indicates the degree of association between the observed and predicted values. To assist further in this evaluation, another index called coefficient of efficient (Ce) was used. This coefficient was proposed by Nash and Sutcliffe (1970) and used by Masheshwari and McMahon (1993), Zin El-Abedin and Ismail (1999) and Sharaf (2003). If \(R \) and Ce are close to each other, the model is free from any bias all or part of the data. Ce is defined below as:

\[C_e = \frac{\sum \limits_{i=1}^{n} (X_{oi} - \bar{X}_o)^2 - \sum \limits_{i=1}^{n} (X_{oi} - X_{pi})^2}{\sum \limits_{i=1}^{n} (X_{oi} - \bar{X}_o)^2} \]

Where:
- \(C_e \) = coefficient of efficient
- \(n \) = number of observations
- \(X_{oi} \) = ith value of observed measurements, kN.
- \(X_{pi} \) = ith value of predicted measurements, kN.
- \(\bar{X}_o \) = average observed value, kN.

Model verification:

For different implement type:

A graphical comparison of the observed versus predicted drawbar pull for the two implement tillage is given in Figures (5) and (6).
Fig. 5: The goodness of drawbar pull predicting by equation for moldboard plow.

Fig. 6: Verification of drawbar pull predicting by equation for chisel plow

In general, the value of A close to 1 and B close to zero, accompanied by low standard error of estimation λ and high R2, R (correlation coefficient) and coefficient of efficient C_e values, would indicate satisfactory prediction by the model. Because the slope A and the intercept B are significantly different from 1.0 and 0, respectively, at the 99% level of confidence, a bias exists within the model estimation. This bias oscillates between over and
less estimation which depends mainly on A and B values. The results of this evaluation along with the statistical parameters for drawbar pull given in Table (5).

Table (5): Indices of the different implements in predicting drawbar pull, kN diameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Moldboard</th>
<th>Chisel</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>A</td>
<td>1.99</td>
<td>1.92</td>
</tr>
<tr>
<td>B</td>
<td>0.91</td>
<td>0.9</td>
</tr>
<tr>
<td>C_e</td>
<td>1</td>
<td>0.97</td>
</tr>
<tr>
<td>R^2</td>
<td>0.92</td>
<td>0.95</td>
</tr>
<tr>
<td>R</td>
<td>0.957</td>
<td>0.975</td>
</tr>
<tr>
<td>λ</td>
<td>0.0622</td>
<td>0.2758</td>
</tr>
</tbody>
</table>

Considering the value of various indices of evaluating the plow type, one can find that R^2 values for the two implements are greater than 0.90 and C_e values are close to R^2. The value of A and B are closer to 1 and 0 respectively. Furthermore, R^2 values are high, less difference between R^2 and C_e and λ values are minimal.

In general, the correlation between the observed and predicted pull for the two implements is satisfactory. This indicates that the model output is appropriate and the bias existing within the implement can be attributed to the experimental errors and field condition variation.

CONCLUSIONS

The results of the present study led to the following conclusions:
1- The maximum tractive efficiency is obtained in the dry soil with low tire inflation pressure.
2- The correlation between the observed and predicted pull for the two implements is satisfactory. This indicates that the model output is appropriate and the bias existing within the implement can be attributed to the experimental errors and field condition variation.
3- Considering the value of various indices of evaluating the plow type, one can find that R^2 values for the two implements are greater than 0.90 and C_e values are close to R^2. The value of A and B are closer to 1 and 0 respectively. Furthermore, R^2 values are high, less difference between R^2 and C_e and λ values are minimal.
REFERENCES

The 17th. Annual Conference of the Misr Society of Ag. Eng., 28 October, 2010 - 1090 -
الديناميكي على محور العجل الخلفي للجرار.

تم أستنباط وأختبار صلاحية النموذج للتنبؤ بقوة المحركات الحفائر والقلب المطرقة كما يلي:

\[
P = \left[\beta_1 \times \frac{\gamma \times Z^2}{\pi d} + \beta_2 \times \frac{F_c}{Z^2 \times V} - \beta_3 \times \left(\frac{W}{Z^2 \times C_i} \right) + \beta_4 \left(\frac{d}{\delta} \right) + \beta_5 \right] \times W
\]

Where:

<table>
<thead>
<tr>
<th>Constant</th>
<th>Chisel Plow</th>
<th>Moldboard Plow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_1)</td>
<td>55.198</td>
<td>28.61</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>674.1</td>
<td>-1455.7</td>
</tr>
<tr>
<td>(\beta_3)</td>
<td>0.004764</td>
<td>0.005071</td>
</tr>
<tr>
<td>(\beta_4)</td>
<td>-0.02236</td>
<td>-0.01978</td>
</tr>
<tr>
<td>(\beta_5)</td>
<td>0.52973</td>
<td>0.946452</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.95</td>
<td>0.92</td>
</tr>
</tbody>
</table>

وأظهرت النتائج أن:

1. الجرار يعطي أفضل أداء له عند الضغط المنخفض في حالة استخدام المحركات القلاب والحفار.
2. أقوى قوة شد تم الحصول عليها في حالة استخدام المحركات القلاب والضغط المنخفض داخل الأطارات الخلفية للجرار عند نسبة الرطوبة العالية للترية.
3. أقوى قوة وأعلى كفاءة للشد تم الحصول عليها في حالة الضغط المنخفض للهواء داخل الأطارات الخلفية للجرار.