OPTIMIZE IRRIGATION WATER USE OF GREEN PEAS UNDER DEFICIT IRRIGATION IN SEMI-ARID REGIONS

Document Type : Original Article

Authors

1 Assoc. Prof., Ag. Eng. Dept., Fac. of Ag., Cairo U., Egypt.

2 Assoc. Prof., Dept. of Natural Resources and Ag. Eng., Fac. of Ag., Damanhour U., Egypt.

3 Assist. Prof., Dept. of Natural Resources and Ag. Eng., Fac. of Ag., Damanhour U., Egypt.

Abstract

A study was carried out in the 2017 and 2018 cropping seasons, to determine the effect of deficit irrigation and stressed growing stages on the green pea yield and water use efficiency under semi-arid climatic conditions of Elbayda, Libya. Irrigation treatments included (IR100: 1 time potential crop evapotranspiration (ETc), IR90: 0.9 ETc, IR80: 0.8 IR70 and 0.7 ETc, ET4), and stressed-growing stages included vegetative (V), flowering (F), pods (P) and all stages (A). It is clear from the results that the water regime affected the growth and yield of the pea plants. Both the level of deficit and its timing during the plant life had an effect on the plant growth indicators and the final plant yield. In general the yield decreased as the deficit level increased but the water use efficiency increased with mild water deficit (IR90) then decreased as the deficit level increased. The drought stress during the flowering stage resulted in an increase in the final yield of the pea plants. The water regime to achieve the highest water use efficiency (WUE) while minimizing the water use is 80 % ETc during the flowering stage (IR80). The highest value of yield production would be at 90% ETc during the flowering stage (IR90F).

Keywords

Main Subjects


Allen, R. G.; Pereira, L. S.; Raes, D. and Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
Ashraf, M. I.; Pervez, M. A.; Amjad, M.; Ahmad, R. and Ayub, M. (2011). Qualitative and quantitative response of pea (Pisum sativum L.) cultivars to judicious applications of irrigation with phosphorus and potassium. Pak. J. life Soc. Sci., 9(2): 159-164.
Capra, A.; Consoli, S. and Scicolone, B. (2008). Chapter 4: Deficit irrigation: Theory and practice. In: Alonso D, Iglesias HJ (eds) Agricultural irrigation research progress. Nova Science Publishers, Inc. ISBN 978-1-60456-579-9
Chai, Q.; Gan, Y.; Turner, N.C.; Zhang, R.Z.; Yang, C.; Niu, Y. and Siddique, K.H.M. (2014). Water-saving innovations in Chinese agriculture. Adv Agron 126:147–197. doi:10.1016/B978-0-12-800132-5.00002-X
Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.; Waskom, R.M.; Niu, Y. and Siddique, K.H.M. (2016). Regulated deficit irrigation for crop production under drought stress. A review. Agron Sustain Dev 36(3):2–21
De Wit, M. and Stankiewicz, J. (2006). Changes in surface water supply across Africa with predicted climate change. Science 31(311):1917–1921. doi:10.1126/science.1119929
Din, J.; Khan, S. U.; Ali, I. and Gurmani, A. R. (2011). Physiological and agronomic response of canola varieties to drought stress. J Anim Plant Sci, 21(1), 78-82.‏
Fallon, E. ; Tremblay, N. and Desjardins, Y. (2006). Relationships among growing degree-days tenderness, other harvest attributes and market value of processing pea (Pisum sativum L.) cultivars grown in Quebec. Can. J. Plant Sci.86, 525–537.
Fawaz, M. M. and Soliman, S. A. (2016). The potential scenarios of the impacts of climate change on Egyptian resources and agricultural plant production. Open Journal of Applied Sciences6(04), 270.‏
Fereres, E. and Soriano, M.A. (2007). Deficit irrigation for reducing agricultural water use. J. Exp. Botany 58, 147–159.
Fernandes-Silva, A.; Oliveira, M.; Paço, T.A. and Ferreira, I. (2018). Deficit irrigation in Mediterranean fruit trees and grapevines: water stress indicators and crop responses. In: Irrigation in agroecosystems. https://doi.org/10.5772/intechopen.80365
Forouzani, M. and Karami, E. (2011). Agricultural water poverty index and sustainability. Agron Sustain Dev 31:415–432. doi:10.1051/agro/ 2010026
Gan, Y.; Siddique, K.H.M.; Turner, N.C.; Li, X-G.; Niu, J-Y.; Yang, C.; Liu, L. and Chai, Q. (2013). Ridge-furrow mulching systems—an innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv Agron 118:429–476. https://doi.org/10.1007/s11104-010-0312-7
Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir. J.F.; Pretty, J.; Robinson, S.; Thomas, S.M. and Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science 327:812–818. doi: 10.1126/science.1185383
Guilioni, L.; Wéry, J. and Lecoeur, J. (2003). High temperature and water deficit may reduce seed number in field pea purely by decreasing plant growth rate. Functional Plant Biology, 30(11), 1151-1164.
Jin, J.; Lauricella, D.; Armstrong, R.; Sale, P. and Tang, C. (2014). Phosphorus application and elevated CO2 enhance drought tolerance in field pea grown in a phosphorus-deficient vertisol. doi:10.1093/aob/mcu209, available online at www.aob.oxfordjournals.org.
Johnson, N.; Revenga, C. and Echeverria, J. (2001). Managing water for people and nature. Science 292:1071–1072
Kögler, F. and Söffker, D. (2017). Water (stress) models and deficit irrigation: system-theoretical description and causality mapping. Ecol Model 361:135–156
Lecoeur, J. and Guilioni, L. (2010). Influence of water deficit on pea canopy functioning.In: Munier-Jolain, N., Biarnès, I., Lecoeur, J., Jeuffroy, M.-H. (Eds.), Physiology ofthe Pea Crop. Science Publishers, Enfield, USA, pp. 135–161.
Lovelli, S.; Perniola, M.; Ferrara, A. and Tommaso, T.D. (2007). Yield response factor to water (Ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L. Agric. Water Manage. 92, 73–80.
Nagaz, K.; Masmoudi, M.M. and Ben Mechlia, N. (2012). Yield response of drip-irrigated onion under full and deficit irrigation with saline water in arid regions of Tunisia. ISRN Agronomy. 562315, 8 p. https://doi.org/10.5402/2012/562315
Rasaei, A.; Ghobadi, M.E. and Ghobadi, M. (2012). Effect of supplemental irrigation andplant density on yield and yield components of peas (Pisum sativum L.) inKermanshah region. Afr. J. Agric. Res. 7, 2353–2358
Riaz, A. T. I. F.; Younis, A.; Taj, A. R.; Karim, A.; Tariq, U.; Munir, S. and Riaz, S. (2013). Effect of drought stress on growth and flowering of marigold (Tagetes erecta L.). Pak. J. Bot, 45(S1), 123-131.‏
Schiermeier, Q. (2014). The parched planet: water on tap. Nature 510:326– 328. doi:10.1038/510326a
Shalaby, A.A.; Saad, A.F. and Mokhtar, A.M.A. (2014). Impact of water stress during different growth stages on tomato yield under various irrigation systems. J Soil Sci Agric Eng Mansoura Univ 5(4):515–527
Sorensen, J.N.; Edelenbos, M. and Wienberg, L. (2003). Drought effects on green pea texture and related physical-chemical properties at comparable maturity. J.Am. Soc. Hort. Sci. 128, 128–135.
Taha, A.M.; Yasso, E. and Sayed, M.A. (2019). Response of onion productivity to deficit irrigation in calcareous soil. J Crops Soil. Accepted for publication.
Yordanov, I.; Velikova, V. and Tsonev, T. (2000). Plant responses to drought, acclimation, and stress tolerance. Photosynthetica, 38, 171-186.