STUDY ON HELICOPTER AERIAL SPRAYING UNDER FIELD CANOLA CONDITIONS

Document Type : Original Article

Author

Lecturer in Dept. of Agric. Eng. Faculty of Agricultural, Kafr El-Sheikh University, 33516-kafr El-Sheikh, Egypt.

Abstract

A field study was conducted to determine influences of spray speed, liquid spray pressure, and height of boom sprayer on effective spray deposition and reduction of drift at canola (Brassica Rapa) flowering stage from AS 350 helicopter. Results of the study show that aircraft height of 2 m and liquid pressure 460  kPa at spray speed  97 km/h reduce effective drift when compared to boom height 10  m and low liquid pressure  230 kPa  for each other fly speed 138 km/h, 115 km/h under operating conditions. The result indicated that the amount of drift deposits decreased as target distance downwind increased. The minimum value of the drift at 50 m distance downwind no spray surface area  were 0.006 µg/cm2, 0.041 µg/cm2 and 0.064 for spray speed 97 km/h, 115 km/h and 138 km/h under operating pressure 460 kPa and aircraft height 2 m respectively. The maximum coverage value was 26.8 % at 460 kPa spray pressure compared to 14.7 % at 230 kPa under low spray speed and low aircraft height.
 

Keywords

Main Subjects


Anon. 1998. Helicopter techniques for aerial applications. Bell Helicopter Textron Inc., P.O. Box 482, Fort Worth, Texas 76101.
ASAE Standards, 47th  Ed.  2004. St. Joseph, Mich.: ASAE.
Bird, S. L., D. M. Esterly, and S. G. Perry. 1996. Off–target deposition of pesticides from agricultural aerial spray applications. J. Environmental Quality 25(6): 1095–1104
Bird, S. L., S. G. Perry, S. L. Ray, and M. E. Teske.  2002.  Evaluation of the AgDISP aerial spray algorithms in the AgDRIFT model.  Environ. Toxicol. Chem. 21(3):672-681.
Carlton, J. B. and L. F. Bouse. 1988. Exploring aerial spray sampling with a cylindrical collector. Transactions of the ASAE, 31(4):990-997.
Dabrowski, J. M. and R. Schulz.  2003.  Predicted and measured levels of azinphosmethyl in the  Lourens River,  South  Africa:Comparison  of  runoff  and  spray  drift.   Environ. Toxicol. Chem. 22(3):494-500.
Ganzelmeier,   H.,   D.   Rautmann,   R.   Spangenberg,   M.   Streloke,   M.   Herrmann,   H.-J. Wenzelburger, and H.-F. Walter.  1995.  Studies on the spray drift of plant protection products.  Heft 305, Blackwell Wissenschafts-Verlag GmbH, Berlin: 111 pp
Johnson, D. R. 1994. Spray Drift Task Force 1992 aerial field study in Texas. EPA MRID No. 432540–01.
Johnson, D. R. 1995a. Spray Drift Task Force 1993 cool season aerial field study in Texas. EPA MRID No. 435358–01.
Johnson, D. R. 1995b. Spray Drift Task Force 1993 hot, humid aerial field study in Texas. EPA MRID No. 435358–02.
Johnson, D. R. 1995c. Drift from applications with aerial sprayers: Integration and summary of 1992 and 1993 field studies. EPA MRID No. 438035–01.
Kirk, I. W. 2000. Aerial spray drift from different formulations of glyphosate. Transactions of the ASAE, 43(3):555-559.
Mulkey, M. E. 2001. EPA, OPP-00730; FRL-6792-4. Pesticides; Draft guidance for pesticide registrants on new labeling statements for spray and dust drift. Federal Register 66(163):44141-44143.
Payne NJ, Thompson DG (1992) Off-target glyphosate deposits from Aerial silvicultural applications under various meteorological conditions. Pestic Science 34: 53-59.
Payne NJ, Feng JC, Reynolds PE (1990) Off-target deposits and buffer zones required around water for aerial glyphosate applications. Pestic Science 30: 183-198.
Riley CM, Wisener CJ, Sexsmith, WA (1991) Estimating off-target spray deposition on the ground following the aerial application of glyphosate for conifer release in New Brunswick. J Environ Sci Health B26(2): 185-208.
Teske ME, Bird SL, Esterly DM, Curbishley TB, Ray SL, Perry SG (2002) AgDRIFT®: a model for estimating near-field spray drift from aerial applications. Environmental Toxicology and Chemistry 21(3): 659 –671.
SAS. 2001. SAS version 8.2. SAS Institute Inc., Cary, NC, USA.