REPLACEMENT EFFECT OF CEMENT BY RICE STRAW ASH ON CEMENT MORTAR PROPERTIES

Document Type : Original Article

Authors

Assist. Prof., Ag. and Biosystems Eng. Dept., Fac. of Ag. (El-Shatby), Alexandria Univ., Egypt.

Abstract

Rice straw ash (RSA) is an agricultural waste product which is produced in large quantities globally every year. Due to the difficulty involved in its disposal, it is becoming an environmental hazard in rice producing countries.  In Egypt, RSA presents an important environmental impact. One way to reduce the impact of the construction activity is by substitute pozzolanic materials for ordinary Portland cement (OPC). In this work, an experimental study was conducted on the effect of partial replacement of OPC with RSA on the Engineering properties of cement mortar.  Control mortar mix with OPC was made and in other mixes OPC were replaced with RSA up to 75 % by weight. The work focused on some physical and mechanical properties of the OPC- RSA mortar. It consisted of: density, porosity, water absorption, setting time, flexural, compressive strength, and scanning electron microscopy (SEM). The results showed that both initial and final setting times increased with increasing the RSA replacement percent. OPC-RSA mortar gave excellent enhancement in strength for 15 % replacement. Moreover, up to 20% of OPC could be valuably replaced with RSA without adversely effecting in strength. Further, hydration reactions of OPC-RSA mortars were investigated using SEM at 28 days.

Al-Khalaf M. N. and H. A.,Yousif, 1984. Use of Rice Husk Ash in Concrete, The International Journal of Cement Composites and Lightweight Concrete, 6(4), p. 241~248.
Allam, M.E., L.G. Gihan G., Hala, 2011. Recycled Chopped Rice Straw–Cement Bricks: Mech. Fire Resistance & Economical Assessment, Australian Journal of Basic and Applied Sciences, Vol. 5(2), pp 27~33.
ASTM C 618, 1997. Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete, Philadelphia, Pa USA.
ASTM.  D 1037, 1984.  Evaluating of wood base fiber and particle panel materials. Philadelphia, Pa U.S.A.
 BS 4550-3-3.6, 1978. Methods of testing cement. Physical tests. Test for setting times.
BS EN 197-1, 2000. Cement, composition, specifications and conformity criteria for common cements.
Chandrasekhar, K. G., P. N. Satyanarayana, P. Pramada, 2003. Processing Properties and Applications of Reactive Silica from Rice Husk. Journal of Materials Science, 38 (2003), 3159~3168.
Chindaprasirt, P., C. Jaturapitakkul, and T. Sinsiri, 2005. Effect of fly ash fineness on compressive strength and pore size of blended cement paste.  Cement  and  Concrete  Composites. 27(4): 425~428.
Cook, D.J. and H.T. Cao, 1987.  An Investigation of the Pore Structure in Fly Ash/OPC Blends. In the Proceedings of the 1987 1st International  RILEM Congress on  From Materials  Science  to  Construction  Materials  Engineering, Pore Structure and Materials Properties. pp. 69~76.
Dashan, I. I. and E. E. I. Kamang 1999. Some characteristics of RHA/OPC Concretes: A Preliminary Assessment, Nigerian Journal of Construction Technology and Management, 2(1), p. 22~28.
DIN EN 196-1, 2005. Methods of testing cement - Part 1: Determination of strength”, Beuth Verlag, Berlin.
Elwan, M.M., M.S. Attriss, A.A. Mahmoud, and A.S. Salem, 2006. Characterizaon of rice straw/ash and using in clay bricks. Proceeding of first scientific environmental convironmental conferrence, Zagazig university, 79 ~ 92.
Englehardt, J.D.,   and   C. Peng, 1995.  Pozzolanic filtration/solidification  of  radionuclides  in  nuclear  reactor cooling water. Waste Management. 15 (8): 585~592.
FAO, 2010. FAO statistical yearbook, http://www.fao.org/economic/ess/ess-publications/ess-yearbook/ess-yearbook2010/en/
Feng, Q., H. Yamamichi, M. Shoya, and S. Sugita, 2004. Study on the pozzolanic properties of rice husk ash by hydrochloric acid  pretreatment.   Cement  and  Concrete Research. 34(3): 521~526.
Gonen T., S. Yazicioglu, 2007. The influence of compaction pore on sorptivity and carbonation of concrete, Constr Build Mater, Vol. 21, pp 1040~1045.
Guneyisia, E., T. Ozturanb, M. Gesog lu, 2007. Effect of initial  curing  on  chloride  ingress  and  corrosion  resistance characteristics  of  concretes  made with plain  and  blended cements., Building and Environment. 42(7): 2676~2685.
Habeeb, G. A., and M. M. Fayyadh, 2009. Rice Husk Ash Concrete: the Effect of RHA Average Particle Size on Mechanical Properties and Drying Shrinkage. Australian Journal of Basic and Applied Sciences. 3(3): 1616~1622.
Ithuralde, G., 1992. Permeability: The Owner’s Viewpoint. In: Mailer Y.   ed., High Performance Concrete from Material to Structure. London: 276~294.
Kassim, K. A. and K. K. Chern, 2004. Lime stabilized Malaysian  cohesive   soils.  Civil   engineering   National Journal. 16(1): 13~23.
Malhotra, V.M. and P.K. Mehta, 2004. Pozzolanic and Cementitious Materials. London: Taylor & Francis.
Moraes J.C.B, J.L. Akasaki, J.L.P. Melges, J. Monzó, M.V. Borrachero, L. Soriano, J. Payá, and M. M. Tashima, 2015. Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: Microstructural characterization of pastes and mechanical strength of mortars, Construction and Building Materials, 94 : 670~677.
Morsy, Md. I. N., 2011. Properties of rice straw cementitious composite, Degree of Doctor of Engineering, Dept. Civil Eng. and Geodesy, Tecnische Universität Darmstadt.
Munshi S., G. Dey and R. P. Sharma, 2013. Use of Rice Straw Ash as Pozzolanic Material in Cement Mortar, IACSIT International Journal of Engineering and Technology, Vol. 5, No. 5.
Omotosoa, O. E., D. G. Ivey, R. Mikulab, 1995. Characterization of  chromium  doped  tricalcium  silicate using  SEM/EDS,  XRD  and  FTIR.  Journal  of  Hazardous Materials. 42(1): 87~102.
Papadakis, V. and S. Tsimas, 2002. Supplementary cementing materials in concrete: Part I: efficiency and design. Cement and Concrete Research.  32 (10): 1525~1532.
Poon, C.S., Y.L. Wong, and L. Lam, 1997. The influence of  different  curing  conditions on the  pore structure  and related  properties of fly ash  cement  pastes and mortars. Construction and Building Materials. 1(7-8): 383~393.
Rodrigues, C.S., K. Ghavami, and  P. Stroeven, 2006. Porosity  and  water  permeability of  rice husk  ash-blended cement composites reinforced  with  bamboo  pulp.,  Journal of Materials Science.  41(21): 6925~6937. 
Saraswathy, V., and S., Ha-Won, 2007. Corrosion performance of rice husk ash blended concrete. Construction and Building Materials, 21 (8): 1779~1784.
Singh, M., M. Grag, 2006. Strength and Durability of cementitious binder produced from fly ash- lime sludge-Portland cement, Indian J. of  Eng. & Mat. Sci., Vol.13, pp 75~79.
Taylor, H. F.W., 1990. Cement Chemistry, London, Thomas Telford.
Toutanji, H., N. Delatte, S. Aggoun, R. Duval, and A. Danson, 2004.  Effect  of  Supplementary Cementitious Materials  on  the  Compressive  Strength  and  Durability  of Short-Term  Cured Concrete. Cement and Concrete Research. 34(2): 311~319.
Villar-Cocin, E., E. Valencia-Morales, R. Gonzalez-Rodrıguez, and J.  Hernandez-Ruız, 2003.  Kinetics  of the pozzolanic reaction between lime and sugar cane straw ash by electrical conductivity measurement: A  kinetic–diffusive model. Cement and Concrete Research. 33(4): 517~524.
Wang K., S. Shah and A. Mishulovich, 2004. Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders, Cement and Concrete Research, 34: 299~309.
Zhang, M.H., R. Lastra, and V.M. Malhotra, 1996. Rice-husk ash paste and concrete: Some aspects of hydration and the microstructure of the interfacial zone between the aggregate and paste. Cement and Concrete Research. 26(6): 963~977.